Volume 66 Issue 4
Jun.  2022
Turn off MathJax
Article Contents
WANG Fang, SHI Yushu, ZHANG Shu, LI Wei. Nanowire Width Metrology Technology Based on Lattice Constant of Silicon[J]. Metrology Science and Technology, 2022, 66(4): 13-18, 47. doi: 10.12338/j.issn.2096-9015.2021.0587
Citation: WANG Fang, SHI Yushu, ZHANG Shu, LI Wei. Nanowire Width Metrology Technology Based on Lattice Constant of Silicon[J]. Metrology Science and Technology, 2022, 66(4): 13-18, 47. doi: 10.12338/j.issn.2096-9015.2021.0587

Nanowire Width Metrology Technology Based on Lattice Constant of Silicon

doi: 10.12338/j.issn.2096-9015.2021.0587
  • Accepted Date: 2022-01-25
  • Available Online: 2022-02-10
  • Publish Date: 2022-06-02
  • With the continuous reduction of the critical dimension in integrated circuits, the measurement accuracy is required to reach the atomic level to ensure the effectiveness of devices, which brings new challenges to the precise measurement of the nanowire width. In 2018, the 26th Conférence Générale des poids et Mesures (CGPM) proposed the use of silicon {220} lattice spacing as a realization of the definition of the metre, which provides new ideas and methods for atomic scale nanowire width metrology technology. In China, we have mastered the measurement principle of the line width based on the lattice constant of silicon, developed a series of small-value nanowire width standards, and established intelligent methods for nanowire width estimation. These works are basic for the preliminary establishment of our nation’s atomic traceability system of the line width. In addition, we introduce the next stage of research goals of the line width measurement technology, the future influence in the world, and its supporting role in the development of large-scale integrated circuits with independent intellectual property rights in China.
  • loading
  • [1]
    Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019, 28(3): 030601. doi: 10.1088/1674-1056/28/3/030601
    [2]
    李琪,施玉书,李伟,等.微纳米光学测量的严格耦合波分析方法[J].计量科学与技术,2020(12):3-6,11.
    [3]
    孙淼,黄鹭,高思田,等. 多角度动态光散射法的纳米颗粒精确测量[J]. 计量学报, 2020, 41(5): 529-537.
    [4]
    高慧芳,任玲玲.纳米尺度氧化铪薄膜膜厚标准物质的研制[J].计量科学与技术,2021(1):61-65,78.
    [5]
    施玉书,张树,连笑怡,等.毫米级纳米几何特征尺寸计量标准装置多自由度激光干涉计量系统[J].计量学报,2020,41(7):769-774.
    [6]
    孟雪,刘冉,王冰玥,等.纳米/亚微米/微米粒度标准物质研究进展[J].计量技术,2020(1):12-17.
    [7]
    Massa E, Mana G, Kuetgens U, et al. Measurement of the lattice parameter of a silicon crystal[J]. New Journal of Physics, 2009, 11: 053013. doi: 10.1088/1367-2630/11/5/053013
    [8]
    Massa E, Mana G, Kuetgens U, et al. Measurement of the {220} lattice-plane spacing of a 28Si X-ray interferometer[J]. Metrologia, 2011, 48: S37-S43. doi: 10.1088/0026-1394/48/2/S06
    [9]
    崔建军. 基于Fabry-Perot干涉与原子晶格间距的微位移计量及溯源研究 [D]. 天津: 天津大学, 2014.
    [10]
    Dai G L, Zhu F, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015, 26: 115006. doi: 10.1088/0957-0233/26/11/115006
    [11]
    Ernest G K, Szabo C I, Cline J P, et al. The lattice spacing variability of intrinsic float-zone silicon[J]. Journal of Research of the National Institute of Standards and Technology, 2017, 122: 24. doi: 10.6028/jres.122.024
    [12]
    Guthrie W F, Dixson R G, Allen R, et al. RM 8111: development of a prototype linewidth standard[J]. Journal of Research of the National Institute of Standards and Technology, 2006, 111(3): 187-203. doi: 10.6028/jres.111.016
    [13]
    Orji N G, Dixson R G, Garcia-Gutierrez D I, et al. TEM calibration methods for critical dimension standards[J]. Metrology, Inspection, and Process Control for Microlithography XXI, 2007, 6518: 651810. doi: 10.1117/12.713368
    [14]
    Dai G L, Hahm K, Bosse H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017, 28: 065010. doi: 10.1088/1361-6501/aa665b
    [15]
    Dai G L, Heidelmann M, Kubel C, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013, 24: 085001. doi: 10.1088/0957-0233/24/8/085001
    [16]
    周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016: 202-204.
    [17]
    Takamasu K, Kuwabara K, Takahashi S, et al. Sub-nanometer calibration of CD-SEM line width by using STEM[J]. Metrology, Inspection, and Process Control for Microlithography XXIV, 2010, 7638: 76381K. doi: 10.1117/12.846436
    [18]
    Kiyosh T, Haruki O, Satoru T, et al. Edge determination methodology for cross-section STEM image of photoresist feature used for reference metrology[J]. Metrology, Inspection, and Process Control for Microlithography XXVII , 2013, 8681: 868132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (408) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return