Volume 66 Issue 6
Jul.  2022
Turn off MathJax
Article Contents
YU Yaqin, ZHOU Zhen, DU Biao, LU Xiaoxin, ZHANG Zhengdong. Research Progress of Arsenic and Antimony Detection Methods in Water Environment[J]. Metrology Science and Technology, 2022, 66(6): 19-25, 59. doi: 10.12338/j.issn.2096-9015.2021.0591
Citation: YU Yaqin, ZHOU Zhen, DU Biao, LU Xiaoxin, ZHANG Zhengdong. Research Progress of Arsenic and Antimony Detection Methods in Water Environment[J]. Metrology Science and Technology, 2022, 66(6): 19-25, 59. doi: 10.12338/j.issn.2096-9015.2021.0591

Research Progress of Arsenic and Antimony Detection Methods in Water Environment

doi: 10.12338/j.issn.2096-9015.2021.0591
  • Accepted Date: 2022-03-22
  • Available Online: 2022-04-04
  • Publish Date: 2022-07-29
  • Arsenic and antimony are typical anionic pollutants, and with the development of arsenic-antimony mineral resources, as well as the abuse of arsenic and antimony-containing pesticides and additives, arsenic and antimony pollution incidents in the environment often occur. The development of speciation analysis techniques for arsenic and antimony in environmental media is of great significance for the environmental regulation and pollution prevention of arsenic and antimony pollution. In this paper, the developed speciation analysis techniques for arsenic and antimony were reviewed, with particular attention to the development of current on-site speciation analysis techniques,
  • loading
  • [1]
    M HE, X WANG, F WU, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41-50.
    [2]
    C LIN, Y WU, W LU, et al. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event[J]. Journal of Hazardous Materials, 2007, 142(1-2): 199-207. doi: 10.1016/j.jhazmat.2006.08.006
    [3]
    M FILELLA, N BELZILE, Y W CHEN. Antimony in the environment: a review focused on natural waters I. Occurrence[J]. Earth Science Reviews, 2002, 57(1-2): 125-176. doi: 10.1016/S0012-8252(01)00070-8
    [4]
    D K NORDSTROM. Public health-worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576): 2143-2145. doi: 10.1126/science.1072375
    [5]
    F X X HAN, Y SU, D L MONTS, et al. Assessment of global industrial-age anthropogenic arsenic contamination[J]. Naturwissenschaften, 2003, 90(9): 395-401. doi: 10.1007/s00114-003-0451-2
    [6]
    A H SMITH, E O LINGAS, M RAHMAN. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency[J]. Bulletin of the World Health Organization, 2000, 78(9): 1093-1103.
    [7]
    J CUI, J SHI, G JIANG, et al. Arsenic Levels and Speciation from Ingestion Exposures to Biomarkers in Shanxi, China: Implications for Human Health[J]. Environ. Sci. Technol., 2013, 47(10): 5419-5424. doi: 10.1021/es400129s
    [8]
    M HE. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China[J]. Environmental Geochemistry and Health, 2007, 29(3): 209-219. doi: 10.1007/s10653-006-9066-9
    [9]
    张再平, 王玉. 电感耦合等离子体质谱法测定大米粉中砷、镉含量及不确定度评估[J]. 计量科学与技术, 2021, 65(12): 60-65. doi: 10.12338/j.issn.2096-9015.2019.0427
    [10]
    L YAN, J SONG, T CHAN, et al. Insights into antimony adsorption on {001} TiO2: XAFS and DFT study[J]. Environmental Science & Technology, 2017, 51(11): 6335-6341.
    [11]
    Z ZHOU, Y YU, Z DING, et al. Competitive adsorption of arsenic and fluoride on {201} TiO2[J]. Appl. Surf. Sci., 2019(466): 425-432.
    [12]
    秦婷, 苏庆, 邹琴. 微波消解ICP-MS法测定化妆品中镉的不确定度评定[J]. 计量技术, 2019(2): 14-17.
    [13]
    U K CHOWDHURY, B K BISWAS, T R CHOWDHURY, et al. Groundwater arsenic contamination in Bangladesh and West Bengal, India[J]. Environmental Health Perspectives, 2000, 108(5): 393-397. doi: 10.1289/ehp.00108393
    [14]
    J PODGORSKI, M BERG. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-847. doi: 10.1126/science.aba1510
    [15]
    L RODRIGUEZ LADO, G F SUN, M BERG, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. doi: 10.1126/science.1237484
    [16]
    F LIU, X C LE, A MCKNIGHT WHITFORD, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010, 32(5): 401-413. doi: 10.1007/s10653-010-9284-z
    [17]
    Renehan A, Gleave E N, Mcgurk M. Minimization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry[J]. Analytica Chimica Acta, 1996, 334(1): 177-182.
    [18]
    J HOVORKA, G B MARSHALL. Determination of As, Cd, and Pb in epicuticular waxes of pine and spruce needles by ETAAS[J]. Fresenius' Journal of Analytical Chemistry, 1997, 358(5): 635-640. doi: 10.1007/s002160050482
    [19]
    Yang L L, Zhang D Q. In situ preconcentration and determination of trace arsenic in botanical samples by hydride generation-graphite furnace atomic absorption spectrometry with Pd–Zr as chemical modifier[J]. Analytica Chimica Acta, 2003, 491(1): 91-97. doi: 10.1016/S0003-2670(03)00798-0
    [20]
    W T CORNS, P B STOCKWELL, L EBDON, et al. Development of an atomic fluorescence spectrometer for the hydride-forming elements[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 71-77. doi: 10.1039/ja9930800071
    [21]
    L F DIAS, T D SAINT'PIERRE, S M MAIA, et al. Determination of arsenic, lead, selenium and tin in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry using Ru as permanent modifier and NaCl as a carrier[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2002, 57(12): 2003-2015. doi: 10.1016/S0584-8547(02)00210-0
    [22]
    Y YU, J DU, T CHAN, et al. Core@shell AuFe@FeOx -CFC as electrochemical sensor for trace antimony analysis[J]. Sensors and Actuators B-Chemical, 2020, 319: 128322. doi: 10.1016/j.snb.2020.128322
    [23]
    J DAI, C CHEN, A X GAO, et al. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains[J]. Environmental Science & Technology, 2021, 55(13): 8665-8674.
    [24]
    M OROVAL, C COLL, A BERNARDOS, et al. Selective fluorogenic sensing of As(III) using aptamer-capped nanomaterials[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11332-11336.
    [25]
    A A ENSAFI, N KAZEMIFARD, B REZAEI. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation[J]. Biosensors & Bioelectronics, 2016(77): 499-504.
    [26]
    D L JOHNSON, M E Q PILSON. Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters[J]. Analytica Chimica Acta, 1972, 58(2): 289-299. doi: 10.1016/S0003-2670(72)80005-9
    [27]
    S HU, J LU, C JING. A novel colorimetric method for field arsenic speciation analysis[J]. Journal of Environmental Sciences, 2012, 24(7): 1341-1346. doi: 10.1016/S1001-0742(11)60922-4
    [28]
    S ZHAN, M YU, J LV, et al. Colorimetric detection of trace arsenic(iii) in aqueous solution using arsenic aptamer and gold nanoparticles[J]. Australian Journal of Chemistry, 2014, 67(5): 813-818. doi: 10.1071/CH13512
    [29]
    N PRIYADARSHNI, P NATH, NAGAHANUMAIAH, et al. DMSA-Functionalized Gold Nanorod on Paper for Colorimetric Detection and Estimation of Arsenic (Ill and V) Contamination in Groundwater[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(5): 6264-6272.
    [30]
    M TIGHE, M M EDWARDS, G CLULEY, et al. Colorimetrically determining total antimony in contaminated waters and screening for antimony speciation[J]. Journal of Hydrology, 2018(563): 84-91.
    [31]
    L SONG, K MAO, X ZHOU, et al. A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III)[J]. Talanta, 2016(146): 285-290.
    [32]
    J DU, J CUI, C JING. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor[J]. Chemical Communications, 2014, 50(3): 347-349. doi: 10.1039/C3CC46920D
    [33]
    M YANG, V LIAMTSAU, C FANG, et al. Arsenic speciation on silver nanofilms by surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(13): 8280-8288. doi: 10.1021/acs.analchem.9b00999
    [34]
    V LIAMTSAU, C FAN, G LIU, et al. Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy[J]. Analytica Chimica Acta, 2020(1106): 88-95.
    [35]
    A Y PANARIN, I A KHODASEVICH, O L GLADKOVA, et al. Determination of Antimony by Surface-Enhanced Raman Spectroscopy[J]. Applied Spectroscopy, 2014, 68(3): 297-306. doi: 10.1366/13-07034
    [36]
    陈仁杰, 黄婷婷, 吕良勇, 等. ICP-MS测定陶瓷片密封水嘴浸泡液中镉含量的不确定度分析[J]. 计量学报, 2018, 39(6): 914-917. doi: 10.3969/j.issn.1000-1158.2018.06.30
    [37]
    A A ENSAFI, F AKBARIAN, E HEYDARI SOURESHJANI, et al. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J]. Biosensors & Bioelectronics, 2018(122): 25-31.
    [38]
    N MOGHIMI, M MOHAPATRA, K T LEUNG. Bimetallic nanoparticles for arsenic detection[J]. Anal. Chem., 2015, 87(11): 5546-5552. doi: 10.1021/ac504116d
    [39]
    R GUPTA, J S GAMARE, A K PANDEY, et al. Highly Sensitive Detection of Arsenite Based on Its Affinity toward Ruthenium Nanoparticles Decorated on Glassy Carbon Electrode[J]. Anal. Chem., 2016, 88(4): 2459-2465. doi: 10.1021/acs.analchem.5b04625
    [40]
    周明慧, 伍燕湘, 陈曦, 等. 基于不确定度评价对稻米中镉元素分析标准物质高精度定值方法的比较[J]. 计量学报, 2021, 42(5): 650-657. doi: 10.3969/j.issn.1000-1158.2021.05.17
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (95) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return