Volume 66 Issue 11
Jan.  2023
Turn off MathJax
Article Contents
CUI Jianqiu, GUO Siyi, REN Guoying, WEI Hengzheng, PEI Limei, GAO Tongling, ZHENG Qingguo. Measurement of Thermal Expansion Coefficient of Materials by Laser Absolute Method[J]. Metrology Science and Technology, 2022, 66(11): 20-26. doi: 10.12338/j.issn.2096-9015.2021.0616
Citation: CUI Jianqiu, GUO Siyi, REN Guoying, WEI Hengzheng, PEI Limei, GAO Tongling, ZHENG Qingguo. Measurement of Thermal Expansion Coefficient of Materials by Laser Absolute Method[J]. Metrology Science and Technology, 2022, 66(11): 20-26. doi: 10.12338/j.issn.2096-9015.2021.0616

Measurement of Thermal Expansion Coefficient of Materials by Laser Absolute Method

doi: 10.12338/j.issn.2096-9015.2021.0616
  • Available Online: 2022-11-30
  • Publish Date: 2023-01-17
  • As the requirements for precision measurement and precision machining continue to increase, the measurement of the thermal expansion coefficient (CTE) of materials has become more and more popular, and the uncertainty evaluation of the measurement results is becoming more and more important when using commercial CTE measurement equipment for metrological traceability. The maximum permissible error, the accuracy of the length measurement of the instrument, the accuracy of the constant temperature of the furnace, the accuracy of the temperature measurement of the instrument, and the repeatability of the measurement results will all directly affect the uncertainty evaluation of the measurement results. In this paper, the uncertainty of the measurement results of the thermal dilatometer is evaluated according to the GUM method. While analyzing the error source of the thermal dilatometer of the laser absolute method, a complete measurement model is given, and the synthetic uncertainty of measuring standard quartz samples is calculated according to the model. The user can assess the uncertainty of the measurement results of the self-use equipment according to the error analysis of the laser absolute method of measuring the CTE.
  • loading
  • [1]
    J D James, J A Spittle, S G R Brown, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures[J]. Measurement Science And Technology, 2000, 12: 1-15.
    [2]
    刘建庆, 张金涛, 孙建平. 材料热膨胀率准确测量的研究[J]. 计量学报, 2008, 19(1): 1-10.
    [3]
    吕勇, 王正道. 一种低维材料热膨胀系数的测试系统[J]. 工具技术, 2004, 38(7): 44-45. doi: 10.3969/j.issn.1000-7008.2004.07.017
    [4]
    孙建平, 范开果, 荆卓寅, 等. 激光干涉法测量材料线膨胀系数的实验研究[J]. 计量技术, 2007(5): 13-16.
    [5]
    孙建平, 范开果, 荆卓寅, 等. 基于激光干涉法精密测量材料线膨胀系数装置的研究[J]. 计量学报, 2008, 29(4A): 164-167.
    [6]
    王勇, 汤剑锋. 激光干涉法测固体的线膨胀系数[J]. 湖南文理学院学报(自然科学版), 2009, 21(3): 48-49.
    [7]
    靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131. doi: 10.12338/j.issn.2096-9015.2020.9002
    [8]
    白晨, 刘少坤, 邓承继, 等. 双端激光位移法测量材料高温热膨胀系数[J]. 应用激光, 2020, 4(4): 185-190.
    [9]
    石韡, 童树之, 吴国昌, 等. 高温材料线热膨胀系数检测装置设计研究[J]. 工业计量, 2020(S1): 34-36.
    [10]
    汪千凯. 金属线膨胀系数的研究[J]. 安徽师范大学学报(自然科学版), 2018, 41(5): 440-443. doi: 10.14182/J.cnki.1001-2443.2018.05.007
    [11]
    黄清, 刘璘, 阳佳. 基于光电式材料热膨胀系数的测量[J]. 湖南科技学院学报, 2019, 40(10): 16-17.
    [12]
    G Jäger. Limits of precision measurements based on interferometers [D]. Technical University of Ilmenau: Institute of Process Measurement and Sensor Technology, 2013.
    [13]
    杨新圆. 激光干涉法测量固体材料热膨胀率的不确定度研究[D]. 保定: 河北大学, 2009.
    [14]
    原国家质量监督检验检疫总局. 金属材料热膨胀特征参数的测定: GB/T 4339-2008 [S]. 北京: 中国标准出版社, 2009.
    [15]
    北京科技大学. 一种材料热膨胀系数的双光束干涉测量方法: 200710176227.1[P]. 2008-03-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views (443) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return