Turn off MathJax
Article Contents
Preparation and Magnetoresistive Properties of Tungsten Telluride Magnetoresistive Materials Based on Silver Doping Method[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2021.0624
Citation: Preparation and Magnetoresistive Properties of Tungsten Telluride Magnetoresistive Materials Based on Silver Doping Method[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2021.0624

Preparation and Magnetoresistive Properties of Tungsten Telluride Magnetoresistive Materials Based on Silver Doping Method

doi: 10.12338/j.issn.2096-9015.2021.0624
  • Available Online: 2022-04-22
  • Tungsten telluride magnetoresistive material is famous for its unsaturated magnetoresistance effect. Information storage and the manufacture of magnetic sensor devices based on this also represent an important direction of magnetoresistance research. The doping method can change the magnetic and electrical properties of the material. In order to explore whether tungsten telluride magnetoresistive materials can obtain excellent performance through silver doping, a detailed analysis of how to choose the doping method and why choose silver as the doping element is discussed. And a method for the gentle preparation of bulk silver-doped tungsten telluride magnetoresistive materials is established. A new self-service flux sintering method is used to prepare three typical silver-doped WTe2/Ag materials. The characterization and evaluation of phase, valence state, structure, and accurate measurement of magnetoresistance performance have obtained. These results indicate that the excellence of the silver doping method which is selected, the prepared WTe2/Ag not only has reliable material quality, but also effectively improves the magnetoresistance effect, which make it easier to realize the control conditions when testing the highest value. The measured magnetoresistance is 502.3% at 5 K and 14 T, which is 50% higher than undoped. The magnetoelectric performance is greatly improved by compared with other elements, which is of positive significance for the optimization design and practical application of electromagnetic devices.
  • loading
  • [1]
    Yi Y, Wu C, Wang H, et al. Thickness Dependent Magneto Transport Properties of WTe2 Thin Films[J]. Solid State Communications, 2017, 260: 45-49. doi: 10.1016/j.ssc.2017.05.017
    Lv H Y, Lu W J, Shao D F, et al. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer[J]. Europhysics Letters, 2015, 110(3): 37004. doi: 10.1209/0295-5075/110/37004
    Shuang Li, Feng-cai Lei, Xu Peng, et al. Synthesis of semiconducting 2H-phase WTe2 nanosheets with large positive magnetoresistance[J]. Inorganic Chemistry, 2020, 59(17): 11935-11939. doi: 10.1021/acs.inorgchem.0c02049
    Ali M N, Xiong J, Flynn S. Large, non-saturating magnetoresistance in WTe2[J]. Nature, 2014, 514(7521): 205-208. doi: 10.1038/nature13763
    Gong J, Yang J, Ge M, et al. Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe2[J]. Chinese Physics Letters, 2018, 35(9): 97101. doi: 10.1088/0256-307X/35/9/097101
    Flynn S, Ali M, Cava R J. The effect of dopants on the magnetoresistance of WTe2[J]. University of Kent, 2015, 17(1): 213-220.
    Yang L, Wu H, Zhang L, et al. Highly tunable near-room temperature ferromagnetism in Cr-doped layered Td-WTe2[J]. Advanced Functional Materials, 2021, 31: 2008116. doi: 10.1002/adfm.202008116
    Zhu L, Li Q Y, Lv Y Y, et al. Superconductivity in potassium-intercalated Td-WTe2[J]. Nano letters, 2019, 18: 6585-6590.
    付东之. WTe2, PtTe2等第二类拓扑半金属的输运性质研究[D]. 南京: 南京大学, 2018.
    Xu R, Husmann A, Rosenbaum T F, et al. Large magnetoresistance in non-magnetic silver chalcogenides[J]. Nature (London), 1997, 390: 57-60. doi: 10.1038/36306
    Husmann A, Betts J B, Boebinger G S, et al. Megagauss Sensor[J]. Nature (London), 2002, 417: 421-424. doi: 10.1038/417421a
    Chen, Peng, Xia, et al. Electronic and magnetic properties of Ag-doped monolayer WS2 by stain[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2016, 680: 659-664.
    Look D C, Renlund G M, Burgener R H, et al. As-doped p-type ZnO produced by an evaporation∕sputtering process[J]. Applied Physics Letters, 2004, 85(22): 5269-5271. doi: 10.1063/1.1825615
    Belgacem T, A Ben F, Bouguila N. Electrical behavior and photocatalytic activity of Ag-doped In2S3 thin films[J]. Journal of Electronic Materials, 2021, 50: 3739-3747. doi: 10.1007/s11664-021-08865-0
    王志宏, 曹明星, 马立文, 等. 一种二碲化钨的制备方法: CN109516444A[P]. 2019-3-26.
    Zhou Y, Reed E J. Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules[J]. The Journal of Physical Chemistry C, 2015, 119(37): 21674-21680. doi: 10.1021/acs.jpcc.5b05770
    Jana M K, Singh A, Late D J, et al. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2[J]. Journal of Physics Condensed Matter, 2015, 27(28): 285401. doi: 10.1088/0953-8984/27/28/285401
    Kong W D, Wu S F, Richard P, et al. Raman scattering investigation of large positive magnetoresistance material WTe2[J]. Applied Physics Letters, 2015, 106(8): 081906. doi: 10.1063/1.4913680
    Yoo Y, Degregorio Z P, Su Y, et al. In-plane 2H-1T’MoTe2 homojunctions synthesized by flux-controlled phase engineering[J]. Advanced Materials, 2017, 29(16): 1605461. doi: 10.1002/adma.201605461
    宋庆功, 王延峰, 宋庆龙, 等. 插层化合物Ag(1/4)TiSe2电子结构的第一性原理研究[J]. 物理学报, 2008, 57(12): 419-424.
    侯瑞芬, 张志高, 许志一, 等. 烧结钕铁硼饱和磁化行为研究[J]. 计量科学与技术, 2021, 65(5): 93-95,35. doi: 10.12338/j.issn.2096-9015.2020.9012
    国家市场监督管理总局. 规程测量不确定度评定与表: JJF1059. 1-2017[S]. 北京: 中国标准出版社, 2017.
    Chung K H, Kim S N, Lim S H. Magnetic parameters in giant magnetoresistance spin valve and their roles in magnetoresistance sensitivity[J]. Thin Solid Films, 2018(31), 650: 44-50.
    陈川, 宋文涛, 周新华. 电工钢磁性能测量用单片测试仪的磁轭损耗的研究与分析[J]. 计量科学与技术, 待出版. doi: 10.12338/j.issn.2096-9015.2021.0575.
    Mingxing Cao, Zhihong Wang, Liwen Ma, et al, Tungsten ditelluride: synthesis, structure, and magnetoresistance property[J]. Adv. Electron. Mater, 2021, 993: 2000893.
    杨伟峰. 巨大磁电阻材料WTe2的制备及其磁电输运特性[D]. 杭州: 杭州电子科技大学, 2016.
    Cai P L, Hu J, He L P. Drastic pressure effect on the extremely large magnetoresistance in WTe2: a quantum oscillation study[J]. Phys. Rev. Lett., 2015, 115: 057202. doi: 10.1103/PhysRevLett.115.057202
    梁亚星, 王秀峰, 金晓雪, 等. 氧化铝陶瓷材料电阻率精确测试方法[J]. 计量科学与技术, 2022, 66(1): 22-25.
    贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552. doi: 10.3969/j.issn.1000-1158.2021.11.21
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (7) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint