Citation: | WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. doi: 10.12338/j.issn.2096-9015.2021.0625 |
[1] |
郑士杰, 袁文俊, 缪荣兴, 等. 水声计量测试技术[M]. 第二版. 哈尔滨: 哈尔滨工程大学出版社, 2016: 1-9.
|
[2] |
International Electrotechnical Commission. Underwater acoustics - Hydrophones - Calibration of hydrophones - Part 1: Procedures for free-field calibration of hydrophones: IEC 60565-1: 2020[S]. Geneva, 2020.
|
[3] |
KOUKOULAS T, ROBINSON S, RAJAGOPAL S, et al. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water[J]. Metrologia, 2016, 80(11): 891-898.
|
[4] |
BACON R. Primary calibration of ultrasonic hydrophone using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1988, 35(2): 152-161. doi: 10.1109/58.4165
|
[5] |
KOCH C, MOLKENSTRUCK W. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999, 46(5): 1303-1314. doi: 10.1109/58.796135
|
[6] |
YANG P, XING G, HE L. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer[J]. Ultrasonics, 2014, 54(1): 402-407. doi: 10.1016/j.ultras.2013.07.013
|
[7] |
THEOBALD P, ROBINSON S, THOMPSON A, et al. Technique for the calibration of hydrophones in the frequency range 10 to 600 kHz using a heterodyne interferometer and an acoustically compliant membrane[J]. J. Acoust. Soc. Am., 2005, 118(5): 3110-3116. doi: 10.1121/1.2063068
|
[8] |
KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Absolute calibration of hydrophones using heterodyne interferometry and zero-crossing signal demodulation[C]. In Proceedings of Underwater Acoustic Measurements: Technologies and Results. Kos, Greece, 2011: 1205-1210.
|
[9] |
KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Particle velocity measurements using heterodyne interferometry and Doppler shift demodulation for absolute calibration of hydrophones[C]. In Proc. ECUA. Edinburgh, Scotland: Acoustical Society of America, 2012: 070022.
|
[10] |
WANG M, KOUKOULAS T, XING G, et al. Measurement of underwater acoustic pressure in the frequency range 100 to 500 kHz using optical interferometry and discussion on associated uncertainties[C]. In Proc. ICSV25. Hiroshima, Japan: International Institute of Acoustics and Vibration, 2018: 4909-4914.
|
[11] |
王敏, 杨平, 何龙标, 等. 10 ~ 500 kHz水听器的激光外差干涉法原级校准[J]. 声学学报, 2021, 46(4): 614-622.
|
[12] |
王月兵, 黄勇军. 使用激光测振技术校准水听器灵敏度[J]. 声学学报, 2001, 26(1): 29-33. doi: 10.3321/j.issn:0371-0025.2001.01.006
|
[13] |
王世全. 100 kHz ~ 1 MHz频率范围水听器灵敏度激光法校准及其验证[J]. 宇航计测技术, 2019, 39(3): 58-62. doi: 10.12060/j.issn.1000-7202.2019.03.11
|
[14] |
王世全, 黄勇军, 陈毅. 1 ~ 200 kHz水听器灵敏度光学方法校准[C]. 中国西部声学学术交流会. 雅安: 声学技术, 2015: 81-84.
|
[15] |
ROBINSON S, THEOBALD P, HAYMAN G, et al. The use of optical techniques to map the acoustic field produced by high frequency sonar transducers[C]. In Proceedings of the Institute of Acoustics. Institute of Acoustics, 2006: 726-734.
|
[16] |
HUMPHREY V, ROBINSON S, THEOBALD P, et al. A comparison of hydrophone near‐field scans and optical techniques for characterising high frequency sonar transducers[J]. J. Acoust. Soc. Am., 2008, 123: 3436.
|
[17] |
王月兵, 平自红, 黄勇军. 激光测振技术在水声测量中的应用[C]. 全国船舶仪器仪表学术会议, 成都: 中国仪器仪表学会, 中国造船工程学会. 2001: 157-160.
|
[18] |
THEOBALD P, ROBINSON S, THOMPSON A, et al. Fundamental standards for acoustics based on optical methods - Phase two report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2003.
|
[19] |
THEOBALD P, THOMPSON A, ROBINSON S, et al. Fundamental standards for acoustics based on optical methods - Phase three report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2004.
|
[20] |
International Organization for Standardization. Methods for the calibration of vibration and shock transducers - Part 41: Calibration of laser vibrometers: ISO 16063-41: 2011[S]. Switzerland, 2011.
|
[21] |
KOUKOULAS T, PIPER B, ROBINSON S, et al. Uncertainty contributions in the optical measurement of free-field propagating sound waves in air and water[C]. In Proc. ICSV23. Athens, Greece: International Institute of Acoustics and Vibration, 2016: 1-8.
|
[22] |
王敏, 杨平, 何龙标, 等. 光学法复现水声声压中的过零点解调系统设计[J]. 计量学报, 2019, 40(2): 315-318.
|
[23] |
WILLIAMS E, DARDY H, FINK R. Nearfield acoustical holography using an underwater, automated scanner[J]. J. Acoust. Soc. Am., 1985, 78(2): 789-798. doi: 10.1121/1.392449
|
[24] |
MAYNARD J, WILLIAMS E, LEE Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH[J]. J. Acoust. Soc. Am., 1985, 78(4): 1395-1413. doi: 10.1121/1.392911
|
[25] |
REIBOLD R, MOLKENSTRUCK W. Light diffraction tomography applied to the investigation of ultrasonic fields. I. Continuous waves[J]. Acta Acustica united with Acustica, 1984, 56(3): 180-192.
|
[26] |
PITTS T, GREENLEAF J. Three-dimensional optical measurement of instantaneous pressure[J]. J. Acoust. Soc. Am., 2000, 108(6): 2873-2883. doi: 10.1121/1.1318899
|
[27] |
REMENIERAS J, MATAR O, CALLE S, et al. Acoustic pressure measurement by acousto-optic tomography[C]. IEEE Ultrasonics Symposium. Atlanta, USA: Institute of Electrical and Electronics Engineers Inc. , 2001: 505-508.
|
[28] |
BAHR L, LERCH R. Beam profile measurements using light refractive tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(2): 405-413. doi: 10.1109/TUFFC.2008.658
|
[29] |
王月兵, 王世全. 激光反射全息技术在超声换能器近场测量中的应用[J]. 声学学报, 2012, 37(1): 68-73.
|
[30] |
HARLAND A, PETZING J, TYRER J. Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry[J]. Journal of sound and vibration, 2002, 252(1): 169-177. doi: 10.1006/jsvi.2001.3926
|
[31] |
HARLAND A, PETZING J, TYRER J, et al. Application and assessment of laser Doppler velocimetry for underwater acoustic measurements[J]. Journal of sound and vibration, 2003, 265(3): 627-645. doi: 10.1016/S0022-460X(02)01460-8
|
[32] |
HARLAND A, PETZING J, TYRER J. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer[J]. J. Acoust. Soc. Am., 2004, 115(1): 187-195. doi: 10.1121/1.1635841
|
[33] |
HARLAND A, PETZING J, TYRER J. Visualising scattering underwater acoustic fields using laser Doppler vibrometry[J]. Journal of sound and vibration, 2007, 305(4-5): 659-671. doi: 10.1016/j.jsv.2007.04.026
|
[34] |
THEOBALD P, ROBINSON S, HAYMAN G, et al. Acousto-optic tomography for mapping of high-frequency sonar fields[C]. In Proceedings of Acoustics. Paris, France, 2008: 2833-2838.
|
[35] |
王浩宇, 冯秀娟, 祝海江, 等. 二维声场的光学扫描方法[J]. 计量学报, 2018, 39(3): 381-385. doi: 10.3969/j.issn.1000-1158.2018.03.19
|
[36] |
WANG M, YANG P, HE L, et al. Measurement and reconstruction of underwater acoustic distribution using optical and tomographic techniques[C]. In: Proc. ICSV26. Montreal, Canada: International Institute of Acoustics and Vibration, 2019: 1-7.
|
[37] |
CHINNERY P, HUMPHREY V, BECKETT C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. J. Acoust. Soc. Am., 1997, 101(1): 250-256. doi: 10.1121/1.417976
|
[38] |
TORRAS-ROSE A, BARRERE-FIGUEROA S, JACOBSEN F. Sound field reconstruction using acousto-optic tomography[J]. J. Acoust. Soc. Am., 2012, 131(5): 3786-3793. doi: 10.1121/1.3695394
|
[39] |
CATHIGNOL D, SAPOZHNIKOV O. On the application of the Rayleigh integral to the calculation of the field of a concave focusing radiator[J]. Acoustical Physics, 1999, 45(6): 735-742.
|
[40] |
SCHAFER M, LEWIN P. Transducer characterization using the angular spectrum method[J]. J. Acoust. Soc. Am., 1989, 85: 2202-2214. doi: 10.1121/1.397869
|
[41] |
SAPOZHNIKOV V, MOROZOV A, CATHIGNOL D. Piezoelectric transducer surface vibration characterization using acoustic holography and laser vibrometry[C]. IEEE Ultrasonics Symposium. Montreal, Canada: Institute of Electrical and Electronics Engineers Inc. , 2004: 161-164.
|
[42] |
HUMPHREY V, ROBINSON S, THEOBALD P, et al. Comparison of optical and hydrophone-based near-field techniques for full characterisation of high frequency sonar [C]. Proceedings of Underwater Acoustic Measurements. Heraklion, Greece, 2005: 457-464.
|
[43] |
COOLING M, HUMPHREY V, THEOBALD P, et al. Underwater ultrasonic field characterisation using laser Doppler vibrometry of transducer motion[C]. ICA20. Sydney, Australia: International Congress on Acoustics, 2010: 1-6.
|
[44] |
HUMPHREY V, COOLING M, THEOBALD P, et al. The influence of the acousto-optic effect on LDV measurements of underwater transducer vibration and resultant field predictions[C]. Annual Spring Conference, Acoustics 2013. Nottingham, United kingdom: Institute of Acoustics, 2013: 192-198.
|
[45] |
HUMPHREY V. Optical studies of acoustic fields [C]. International Conference on Underwater Acoustics. Montreal, Canada: Acoustical Society of America, 2020: 1-12.
|
[46] |
WANG Y, TYRER J, PING Z, et al. Measurement of focused ultrasonic fields using a scanning laser vibrometer[J]. J. Acoust. Soc. Am., 2007, 121(5): 2621-2627. doi: 10.1121/1.2713708
|
[47] |
FOOTE K, THEOBALD P. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation[J]. J. Acoust. Soc. Am., 2015, 138(3): 1627-1636. doi: 10.1121/1.4929372
|
[48] |
HU L, ZHAO N, GAO Z, et al. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface[J]. Measurement Science and Technology, 2018, 29(5): 55001. doi: 10.1088/1361-6501/aaaafb
|
[49] |
WILLIAMS E. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. London, United kingdom: Academic press, 1999.
|