Volume 66 Issue 4
Jun.  2022
Turn off MathJax
Article Contents
WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. doi: 10.12338/j.issn.2096-9015.2021.0625
Citation: WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. doi: 10.12338/j.issn.2096-9015.2021.0625

Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique

doi: 10.12338/j.issn.2096-9015.2021.0625
  • Accepted Date: 2022-03-31
  • Available Online: 2022-04-13
  • Publish Date: 2022-06-02
  • Laser interferometry technique provides an alternative way for measurement of underwater acoustic, which is different from the traditional way using a hydrophone. This paper presents a review of the applications in underwater acoustic measurement using laser interferometry, including hydrophone calibration, acoustic distribution measurement, and measurement of transducer surface velocity. The current research progress are summarized and analyzed. The measurement theories of the above three techniques are introduced and some representative results are given, the constraints of each technique and the key problems to be solved are analyzed, and the future research and development directions are predicted. Although laser interferometry is not yet a complete replacement for traditional underwater acoustic measurement, it is expected that the advantages of laser interferometry will be better utilized and the level of underwater acoustic measurements will be improved after continued research and development.
  • loading
  • [1]
    郑士杰, 袁文俊, 缪荣兴, 等. 水声计量测试技术[M]. 第二版. 哈尔滨: 哈尔滨工程大学出版社, 2016: 1-9.
    [2]
    International Electrotechnical Commission. Underwater acoustics - Hydrophones - Calibration of hydrophones - Part 1: Procedures for free-field calibration of hydrophones: IEC 60565-1: 2020[S]. Geneva, 2020.
    [3]
    KOUKOULAS T, ROBINSON S, RAJAGOPAL S, et al. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water[J]. Metrologia, 2016, 80(11): 891-898.
    [4]
    BACON R. Primary calibration of ultrasonic hydrophone using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1988, 35(2): 152-161. doi: 10.1109/58.4165
    [5]
    KOCH C, MOLKENSTRUCK W. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999, 46(5): 1303-1314. doi: 10.1109/58.796135
    [6]
    YANG P, XING G, HE L. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer[J]. Ultrasonics, 2014, 54(1): 402-407. doi: 10.1016/j.ultras.2013.07.013
    [7]
    THEOBALD P, ROBINSON S, THOMPSON A, et al. Technique for the calibration of hydrophones in the frequency range 10 to 600 kHz using a heterodyne interferometer and an acoustically compliant membrane[J]. J. Acoust. Soc. Am., 2005, 118(5): 3110-3116. doi: 10.1121/1.2063068
    [8]
    KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Absolute calibration of hydrophones using heterodyne interferometry and zero-crossing signal demodulation[C]. In Proceedings of Underwater Acoustic Measurements: Technologies and Results. Kos, Greece, 2011: 1205-1210.
    [9]
    KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Particle velocity measurements using heterodyne interferometry and Doppler shift demodulation for absolute calibration of hydrophones[C]. In Proc. ECUA. Edinburgh, Scotland: Acoustical Society of America, 2012: 070022.
    [10]
    WANG M, KOUKOULAS T, XING G, et al. Measurement of underwater acoustic pressure in the frequency range 100 to 500 kHz using optical interferometry and discussion on associated uncertainties[C]. In Proc. ICSV25. Hiroshima, Japan: International Institute of Acoustics and Vibration, 2018: 4909-4914.
    [11]
    王敏, 杨平, 何龙标, 等. 10 ~ 500 kHz水听器的激光外差干涉法原级校准[J]. 声学学报, 2021, 46(4): 614-622.
    [12]
    王月兵, 黄勇军. 使用激光测振技术校准水听器灵敏度[J]. 声学学报, 2001, 26(1): 29-33. doi: 10.3321/j.issn:0371-0025.2001.01.006
    [13]
    王世全. 100 kHz ~ 1 MHz频率范围水听器灵敏度激光法校准及其验证[J]. 宇航计测技术, 2019, 39(3): 58-62. doi: 10.12060/j.issn.1000-7202.2019.03.11
    [14]
    王世全, 黄勇军, 陈毅. 1 ~ 200 kHz水听器灵敏度光学方法校准[C]. 中国西部声学学术交流会. 雅安: 声学技术, 2015: 81-84.
    [15]
    ROBINSON S, THEOBALD P, HAYMAN G, et al. The use of optical techniques to map the acoustic field produced by high frequency sonar transducers[C]. In Proceedings of the Institute of Acoustics. Institute of Acoustics, 2006: 726-734.
    [16]
    HUMPHREY V, ROBINSON S, THEOBALD P, et al. A comparison of hydrophone near‐field scans and optical techniques for characterising high frequency sonar transducers[J]. J. Acoust. Soc. Am., 2008, 123: 3436.
    [17]
    王月兵, 平自红, 黄勇军. 激光测振技术在水声测量中的应用[C]. 全国船舶仪器仪表学术会议, 成都: 中国仪器仪表学会, 中国造船工程学会. 2001: 157-160.
    [18]
    THEOBALD P, ROBINSON S, THOMPSON A, et al. Fundamental standards for acoustics based on optical methods - Phase two report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2003.
    [19]
    THEOBALD P, THOMPSON A, ROBINSON S, et al. Fundamental standards for acoustics based on optical methods - Phase three report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2004.
    [20]
    International Organization for Standardization. Methods for the calibration of vibration and shock transducers - Part 41: Calibration of laser vibrometers: ISO 16063-41: 2011[S]. Switzerland, 2011.
    [21]
    KOUKOULAS T, PIPER B, ROBINSON S, et al. Uncertainty contributions in the optical measurement of free-field propagating sound waves in air and water[C]. In Proc. ICSV23. Athens, Greece: International Institute of Acoustics and Vibration, 2016: 1-8.
    [22]
    王敏, 杨平, 何龙标, 等. 光学法复现水声声压中的过零点解调系统设计[J]. 计量学报, 2019, 40(2): 315-318.
    [23]
    WILLIAMS E, DARDY H, FINK R. Nearfield acoustical holography using an underwater, automated scanner[J]. J. Acoust. Soc. Am., 1985, 78(2): 789-798. doi: 10.1121/1.392449
    [24]
    MAYNARD J, WILLIAMS E, LEE Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH[J]. J. Acoust. Soc. Am., 1985, 78(4): 1395-1413. doi: 10.1121/1.392911
    [25]
    REIBOLD R, MOLKENSTRUCK W. Light diffraction tomography applied to the investigation of ultrasonic fields. I. Continuous waves[J]. Acta Acustica united with Acustica, 1984, 56(3): 180-192.
    [26]
    PITTS T, GREENLEAF J. Three-dimensional optical measurement of instantaneous pressure[J]. J. Acoust. Soc. Am., 2000, 108(6): 2873-2883. doi: 10.1121/1.1318899
    [27]
    REMENIERAS J, MATAR O, CALLE S, et al. Acoustic pressure measurement by acousto-optic tomography[C]. IEEE Ultrasonics Symposium. Atlanta, USA: Institute of Electrical and Electronics Engineers Inc. , 2001: 505-508.
    [28]
    BAHR L, LERCH R. Beam profile measurements using light refractive tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(2): 405-413. doi: 10.1109/TUFFC.2008.658
    [29]
    王月兵, 王世全. 激光反射全息技术在超声换能器近场测量中的应用[J]. 声学学报, 2012, 37(1): 68-73.
    [30]
    HARLAND A, PETZING J, TYRER J. Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry[J]. Journal of sound and vibration, 2002, 252(1): 169-177. doi: 10.1006/jsvi.2001.3926
    [31]
    HARLAND A, PETZING J, TYRER J, et al. Application and assessment of laser Doppler velocimetry for underwater acoustic measurements[J]. Journal of sound and vibration, 2003, 265(3): 627-645. doi: 10.1016/S0022-460X(02)01460-8
    [32]
    HARLAND A, PETZING J, TYRER J. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer[J]. J. Acoust. Soc. Am., 2004, 115(1): 187-195. doi: 10.1121/1.1635841
    [33]
    HARLAND A, PETZING J, TYRER J. Visualising scattering underwater acoustic fields using laser Doppler vibrometry[J]. Journal of sound and vibration, 2007, 305(4-5): 659-671. doi: 10.1016/j.jsv.2007.04.026
    [34]
    THEOBALD P, ROBINSON S, HAYMAN G, et al. Acousto-optic tomography for mapping of high-frequency sonar fields[C]. In Proceedings of Acoustics. Paris, France, 2008: 2833-2838.
    [35]
    王浩宇, 冯秀娟, 祝海江, 等. 二维声场的光学扫描方法[J]. 计量学报, 2018, 39(3): 381-385. doi: 10.3969/j.issn.1000-1158.2018.03.19
    [36]
    WANG M, YANG P, HE L, et al. Measurement and reconstruction of underwater acoustic distribution using optical and tomographic techniques[C]. In: Proc. ICSV26. Montreal, Canada: International Institute of Acoustics and Vibration, 2019: 1-7.
    [37]
    CHINNERY P, HUMPHREY V, BECKETT C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. J. Acoust. Soc. Am., 1997, 101(1): 250-256. doi: 10.1121/1.417976
    [38]
    TORRAS-ROSE A, BARRERE-FIGUEROA S, JACOBSEN F. Sound field reconstruction using acousto-optic tomography[J]. J. Acoust. Soc. Am., 2012, 131(5): 3786-3793. doi: 10.1121/1.3695394
    [39]
    CATHIGNOL D, SAPOZHNIKOV O. On the application of the Rayleigh integral to the calculation of the field of a concave focusing radiator[J]. Acoustical Physics, 1999, 45(6): 735-742.
    [40]
    SCHAFER M, LEWIN P. Transducer characterization using the angular spectrum method[J]. J. Acoust. Soc. Am., 1989, 85: 2202-2214. doi: 10.1121/1.397869
    [41]
    SAPOZHNIKOV V, MOROZOV A, CATHIGNOL D. Piezoelectric transducer surface vibration characterization using acoustic holography and laser vibrometry[C]. IEEE Ultrasonics Symposium. Montreal, Canada: Institute of Electrical and Electronics Engineers Inc. , 2004: 161-164.
    [42]
    HUMPHREY V, ROBINSON S, THEOBALD P, et al. Comparison of optical and hydrophone-based near-field techniques for full characterisation of high frequency sonar [C]. Proceedings of Underwater Acoustic Measurements. Heraklion, Greece, 2005: 457-464.
    [43]
    COOLING M, HUMPHREY V, THEOBALD P, et al. Underwater ultrasonic field characterisation using laser Doppler vibrometry of transducer motion[C]. ICA20. Sydney, Australia: International Congress on Acoustics, 2010: 1-6.
    [44]
    HUMPHREY V, COOLING M, THEOBALD P, et al. The influence of the acousto-optic effect on LDV measurements of underwater transducer vibration and resultant field predictions[C]. Annual Spring Conference, Acoustics 2013. Nottingham, United kingdom: Institute of Acoustics, 2013: 192-198.
    [45]
    HUMPHREY V. Optical studies of acoustic fields [C]. International Conference on Underwater Acoustics. Montreal, Canada: Acoustical Society of America, 2020: 1-12.
    [46]
    WANG Y, TYRER J, PING Z, et al. Measurement of focused ultrasonic fields using a scanning laser vibrometer[J]. J. Acoust. Soc. Am., 2007, 121(5): 2621-2627. doi: 10.1121/1.2713708
    [47]
    FOOTE K, THEOBALD P. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation[J]. J. Acoust. Soc. Am., 2015, 138(3): 1627-1636. doi: 10.1121/1.4929372
    [48]
    HU L, ZHAO N, GAO Z, et al. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface[J]. Measurement Science and Technology, 2018, 29(5): 55001. doi: 10.1088/1361-6501/aaaafb
    [49]
    WILLIAMS E. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. London, United kingdom: Academic press, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (852) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return