Volume 66 Issue 6
Jul.  2022
Turn off MathJax
Article Contents
LI Xiang, XU Xiao. Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter[J]. Metrology Science and Technology, 2022, 66(6): 31-37. doi: 10.12338/j.issn.2096-9015.2021.0637
Citation: LI Xiang, XU Xiao. Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter[J]. Metrology Science and Technology, 2022, 66(6): 31-37. doi: 10.12338/j.issn.2096-9015.2021.0637

Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter

doi: 10.12338/j.issn.2096-9015.2021.0637
  • Accepted Date: 2022-03-31
  • Available Online: 2022-04-22
  • Publish Date: 2022-07-29
  • Water-soluble ions are the main components of atmospheric particulate matter, and play a key role in the source appointment of particulate matters. This paper reviews offline and online monitoring methods, instruments and measurement standards for water-soluble ions in atmospheric particulate matter, analyzes the current status of offline and online monitoring measurement technologies and protocols, and presents the problems such as the lack of reference materials in the pre-treatment of filter membrane samples in offline monitoring, and the large number of gaps in measurement methods, reference materials and standard devices in online monitoring. In view of the above problems, the development direction of metrology research is prospected.
  • loading
  • [1]
    Center for Public Health and Environmental Assessment. Integrated Science Assessment for Particulate Matter: EPA/600/R-19/188[R]. Research Triangle Park, NC: US Environmental Protection Agency, 2019.
    [2]
    李晓晓, 蒋靖坤, 王东滨, 等. 大气超细颗粒物来源及其化学组分研究进展[J]. 环境化学, 2021, 40(10): 2947-2959. doi: 10.7524/j.issn.0254-6108.2021032701
    [3]
    杨帆, 徐建平, 翁祖峰, 等. 区域大气细颗粒物化学组分及来源年变化趋势[J]. 环境监控与预警, 2020, 12(6): 7-11. doi: 10.3969/j.issn.1674-6732.2020.06.002
    [4]
    白志鹏, 王宝庆, 王秀艳, 等. 空气颗粒物污染与防治[M]. 北京: 化学工业出版社, 2011: 3-6.
    [5]
    SOLOMON PA, CRUMPLER D, FLANAGAN JB, et al. US National PM2.5 Chemical Speciation Monitoring Networks-CSN and IMPROVE: Description of networks[J]. Journal of the Air & Waste Management Association, 2014, 64: 1410-1438.
    [6]
    US Environmental Protection Agency. Part 53 - Ambient Air Mmonitoring Reference and Equivalent Methods[EB/OL]. [2021-10-25].https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-53.
    [7]
    European Committee for Standardization. Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter: EN 12341: 2014 [S]. Brussels: European Committee for Standardization, 2014.
    [8]
    国家环境保护总局. 环境空气 总悬浮颗粒物的测定 重量法: GB/T 15432-1995[S]. 北京: 中国标准出版社, 1995.
    [9]
    环境保护部. 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范: HJ 656-2013[S]. 北京: 中国环境科学出版社, 2013.
    [10]
    环境保护部. 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013.
    [11]
    环境保护部. 环境空气质量手工监测技术规范: HJ 194-2017[S]. 北京: 中国环境科学出版社, 2017.
    [12]
    国家市场监督管理总局, 国家标准化管理委员会. 环境空气 颗粒物质量浓度测定 重量法: GB/T 39193-2020[S]. 北京: 中国标准出版社, 2020.
    [13]
    European Committee for Standardization. Ambient air - Guide for the measurement of anions and cations in PM2.5: CEN/TR 16269: 2011[S]. Brussels: European Committee for Standardization, 2011.
    [14]
    European Committee for Standardization. Ambient air - Standard method for measurement of NO3-, SO42-, CI-, NH4+, Na+, K+, Mg2+, Ca2+ in PM2.5 as deposited on filters: EN 16913: 2017 [S]. Brussels: European Committee for Standardization, 2017.
    [15]
    环境保护部. 环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO2-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法: HJ 799-2016[S]. 北京: 中国环境科学出版社, 2016.
    [16]
    环境保护部. 环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法: HJ 800-2016[S]. 北京: 中国环境科学出版社, 2016.
    [17]
    生态环境部. 环境空气颗粒物来源解析监测技术方法指南[EB/OL]. [2021-10-25].https://www.mee.gov.cn/xxgk2018/xxgk/sthjbsh/202005/W020200514318605389760.pdf.
    [18]
    LOTHAR K, CLAUS W. Effect of filter type and temperature on volatilisation losses from ammonium salts in aerosol matter[J]. Atmospheric Environment, 2005, 39: 4093-4100. doi: 10.1016/j.atmosenv.2005.03.029
    [19]
    LOTHAR K, CLAUS W. Laboratory studies on the retention of nitric acid, hydrochloric acid and ammonia on aerosol filters[J]. Atmospheric Environment, 2005, 39: 2157-2162. doi: 10.1016/j.atmosenv.2004.12.021
    [20]
    SIMON P K, DASGUPTA P K. Continuous Automated Measurement of the Soluble Fraction of Atmospheric Particulate Matter[J]. Analytical Chemistry, 1995, 67: 71-78.
    [21]
    WYERS P, BRINK H T, BRANDSMA M, et al. Continuous measurements of size distribution atmospheric aerosol, (NH4)2SO4, H2SO4, NH4NO3, HNO3 and NO, NO2, SO2, O3 near Novosibirsk in 1994 ~ 1995[J]. Journal of Aerosol Science, 1995, 26: S381-S382. doi: 10.1016/0021-8502(95)97098-Y
    [22]
    WEBER R J, ORSINI D, DAUN Y, et al. A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition[J]. Aerosol Science & Technology, 2001, 35: 718-727.
    [23]
    American National Standards Institute. Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter: ANSI/ASHRAE 52.1-1992 [S]. Atlanta: ASHRAE Publication Sales, 1992.
    [24]
    European Committee for Standardization. Respiratory protective devices - Methods of test - Part 7: Determination of particle filter penetration: EN 13274-7: 2019[S]. Brussels: European Committee for Standardization, 2019.
    [25]
    国家标准化管理委员会, 国家市场监督管理总局. 高效空气过滤器性能试验方法 效率和阻力: GB/T 6165-2021[S]. 北京: 中国标准出版社, 2021.
    [26]
    国家质量监督检验检疫总局. 粉尘采样器: JJG 520-2005[S]. 北京: 中国质检出版社, 2005.
    [27]
    国家质量监督检验检疫总局. 总悬浮颗粒物采样器: JJG 943-2011[S]. 北京: 中国质检出版社, 2011.
    [28]
    国家质量监督检验检疫总局. 烟尘采样器: JJG 680-2007[S]. 北京: 中国质检出版社, 2007.
    [29]
    国家质量监督检验检疫总局. PM2.5质量浓度测量仪校准规范: JJF 1659-2017[S]. 北京: 中国质检出版社, 2017.
    [30]
    修宏宇, 崔伟群, 刘俊杰, 等. 采用蒙特卡洛法评定PM2.5切割粒径的不确定度[J]. 计量技术, 2017(11): 3-7.
    [31]
    张文阁, 刘巍, 许潇, 等. PM2.5监测仪检测用国家一级标准物质的研制[J]. 计量学报, 2019, 40(1): 159-163. doi: 10.3969/j.issn.1000-1158.2019.01.26
    [32]
    张文阁, 周文刚, 许潇, 等. PM10监测仪检测用国家一级标准物质的研制[J]. 中国计量, 2020(2): 83-85.
    [33]
    刘佳琪, 张国城, 吴丹, 等. 基于静态箱法的PM2.5切割器捕集效率评价及拟合曲线优化研究[J]. 计量学报, 2021, 41(10): 1398-1403. doi: 10.3969/j.issn.1000-1158.2021.10.21
    [34]
    王婷, 刘巍, 张明, 等. 切割器切割特性试验装置的功能性验证方法探讨[J]. 计量科学与技术, 2022, 66(1): 41-45. doi: 10.12338/j.issn.2096-9015.2020.0371
    [35]
    KOUTRAKIS P, THOMPSON K M, WOLFSON J M, et al. Determination of aerosol strong acidity losses due to interactions of collected particles: Results from laboratory and field studies[J]. Atmospheric Environment. Part A. General Topics, 1992, 26: 987-995. doi: 10.1016/0960-1686(92)90030-O
    [36]
    ZHANG X Q, MCMURRY P H. Evaporative losses of fine particulate nitrates during sampling[J]. Atmospheric Environment. Part A. General Topics, 1992, 26: 3305-3312. doi: 10.1016/0960-1686(92)90347-N
    [37]
    张文阁, 刘巍. 环境空气颗粒物测量中采样滤膜的应用[J]. 中国计量, 2020(6): 86-88.
    [38]
    HERING S, CASS G. The Magnitude of Bias in the Measurement of PM2.5 Arising from Volatilization of Particulate Nitrate from Teflon Filters[J]. Journal of the Air & Waste Management Association, 1999, 49: 725-733.
    [39]
    国家质量监督检验检疫总局. 离子色谱仪检定规程: JJG 823-2014[S]. 北京: 中国质检出版社, 2014.
    [40]
    国家质量监督检验检疫总局. 原子吸收分光光度计检定规程: JJG 694-2009[S]. 北京: 中国质检出版社, 2009.
    [41]
    EMMA G, SANTORO A, SNELL J, et al. CERTIFICATION REPORT The certification of water-soluble ions in a fine dust (PM2.5-like) material: ERM®-CZ110[EB/OL]. [2021-10-25].https://crm.jrc.ec.europa.eu/p/ERM-CZ110.
    [42]
    HSIAO T C, ENGLING G, CHANG P Y, et al. Effect of flow rate on detection limit of particle size for a steam-based aerosol collector[J]. Atmospheric Environment, 2019, 202: 160-166. doi: 10.1016/j.atmosenv.2019.01.014
    [43]
    张文慧, 彭杏, 田瑛泽, 等. PM2.5中典型水溶性离子在线观测标准曲线优化研究[J]. 中国环境监测, 2020, 36: 214-224.
    [44]
    袁超, 王韬, 高晓梅, 等. 大气PM2.5在线监测仪对SO42-, NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
    [45]
    杨懂艳, 刘保献, 石爱军, 等. PM2.5在线水溶性离子与滤膜采集-实验室检测的比对分析[J]. 环境科学, 2016, 37(10): 3730-3736.
    [46]
    TAGHVAEE S, MOUSAVI A, SOWLAT M H, et al. Development of a novel aerosol generation system for conducting inhalation exposures to ambient particulate matter (PM)[J]. Science of the Total Environment, 2019, 665: 1035-1045. doi: 10.1016/j.scitotenv.2019.02.214
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (26) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return