Citation: | QI Yaping, HUO Wanli, JIN Sunjun, HUANG Ji, WANG Zhipeng, ZHANG Jian, WANG Kun. Overview of the Research Progress of Reference Dosimetry in Proton Radiotherapy[J]. Metrology Science and Technology, 2022, 66(6): 38-44. DOI: 10.12338/j.issn.2096-9015.2021.0649 |
[1] |
PAGANETTI H, KOOY H. Proton radiation in the management of localized cancer[J]. Expert Rev Med Devices, 2010, 7(2): 275-285. DOI: 10.1586/erd.10.2
|
[2] |
PTCOG.粒子放疗设置统计[EB/OL].[2021-10-20]. https://www.ptcog.ch/index.php/facilities-underconstruction.
|
[3] |
INTERNATIONAL ATOMIC ENERGY AGENCY. Absorbed Dose Determination in External Beam Radiotherapy[M]. Vienna: IAEA, 2001.
|
[4] |
DICELLO J, UNIVERSITY C, FESSENDEN P, et al. Protocol for heavy charged-particle therapy beam dosimetry: 16[R]. AAPM Report, 1986.
|
[5] |
VYNCKIER S, BONNETT D E, JONES D. Code of practice for clinical proton dosimetry[J]. Radiotherapy & Oncology Journal of the European Society for Therapeutic Radiology & Oncology, 1991, 20 (1): 53-63.
|
[6] |
VYNCKIER S, BONNETT D E, JONES D. Supplement to the code of practice for clinical proton dosimetry[J]. Radiotherapy & Oncology Journal of the European Society for Therapeutic Radiology & Oncology, 1994, 32(2): 174-179.
|
[7] |
KACPEREK A. Clinical Proton Dosimetry Part I: Beam Production, Beam Delivery and Measurement of Absorbed Dose (ICRU Report 59)[J]. Physics in Medicine & Biology, 2000, 45 (10): 3123.
|
[8] |
MUSOLINO S V. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; Technical Reports Series No. 398[J]. Health Physics, 2001, 81 (5): 592-593.
|
[9] |
JR D L, WAMBERSIE A, WHITMORE G. ICRU Report 78, Precribing, recording, and reporting proton-beam therapy[J]. Journal of the ICRU, 2007, 7 (2): 1-210.
|
[10] |
王坤, 金孙均, 王志鹏, 等. 医用加速器光子水吸收剂量量值体系的研究与应用[J]. 中国计量, 2019(7): 77-80.
|
[11] |
KARGER C P, JAKEL O, PALMANS H, et al. Dosimetry for ion beam radiotherapy[J]. Phys Med Biol, 2010, 55(21): 193-234. DOI: 10.1088/0031-9155/55/21/R01
|
[12] |
SARFEHNIA A, CLASIE B, CHUNG E, et al. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery[J]. Med Phys, 2010, 37(7): 3541-50.
|
[13] |
SASSOWSKY M, PEDRONI E. On the feasibility of water calorimetry with scanned proton radiation[J]. Phys Med Biol, 2005, 50(22): 5381-5400. DOI: 10.1088/0031-9155/50/22/011
|
[14] |
MEDIN J. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber[J]. Phys Med Biol, 2010, 55(12): 3287-3298. DOI: 10.1088/0031-9155/55/12/002
|
[15] |
LOURENçO A, THOMAS R, BOUCHARD H, et al. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams[J]. Med Phys, 2016, 43(7): 4122. DOI: 10.1118/1.4951733
|
[16] |
ROSSOMME S, PALMANS H, THOMAS R, et al. Reference dosimetry for light-ion beams based on graphite calorimetry[J]. Radiat Prot Dosimetry, 2014, 161(1-4): 92-95. DOI: 10.1093/rpd/nct299
|
[17] |
MEDIN J, ROSS C K, KLASSEN N V, et al. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam[J]. Phys Med Biol, 2006, 51(6): 1503-1521. DOI: 10.1088/0031-9155/51/6/010
|
[18] |
ROSS C K, KLASSEN N V. REVIEW ARTICLE: Water calorimetry for radiation dosimetry[J]. Physics in Medicine & Biology, 1996, 41(1): 1-29.
|
[19] |
MULDER J. Water calorimetry for proton Implementing a primary dose measurement standard[D]. Groningen: University of Groningen, 2017.
|
[20] |
SHIN W G, RAMOS-MENDEZ J, TRAN N H, et al. Geant4-DNA simulation of the pre-chemical stage of water radiolysis and its impact on initial radiochemical yields[J]. Physica Medica, 2021, 88(77): 86-90.
|
[21] |
GRASSBERGER C, PAGANETTI H. Elevated LET components in clinical proton beams[J]. Phys Med Biol, 2011, 56(20): 6677-6691. DOI: 10.1088/0031-9155/56/20/011
|
[22] |
BREDE H J, GREIFf K D, HECKER O, et al. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields[J]. Physics in Medicine & Biology, 2006, 51(15): 3667-3682.
|
[23] |
GAGNEBIN S, TWERENBOLD D, PEDRONI E, et al. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(5): 524-528. DOI: 10.1016/j.nimb.2009.11.010
|
[24] |
RENAUD J, ROSSOMME S, SARFEHNIA A, et al. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams[J]. Phys Med Biol, 2016, 61(18): 6602-6619. DOI: 10.1088/0031-9155/61/18/6602
|
[25] |
JAFFE G. Zur theory der ionization in kolonnen I[J]. Ann Physik, 2006, 341(12): 303-344.
|
[26] |
ROSSOMME S, HOPFGARTNER J, LEE N D. Ion recombination correction in carbon ion beams[J]. Med Phys, 2016, 43(7): 4198. DOI: 10.1118/1.4953637
|
[27] |
BOAG J W, HOCHHUSER E, BALK O A. The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation[J]. Phys Med Biol, 1996, 41(5): 885-897. DOI: 10.1088/0031-9155/41/5/005
|
[28] |
ROSSOMME S, LORENTINI S, VYNCKIER S, et al. Correction of the measured current of a small-gap plane-parallel ionization chamber in proton beams in the presence of charge multiplication[J]. Zeitschrift für Medizinische Physik, 2021, 31(2): 192-202.
|
[29] |
BHULLAR A S, WATCHMAN C J. The effective depth of cylindrical ionization chambers in water for clinical proton beams[J]. Phys Med Biol, 2012, 57(1): 273-286. DOI: 10.1088/0031-9155/57/1/273
|
[30] |
PALMANS H. Perturbation factors for cylindrical ionization chambers in proton beams. Part I: corrections for gradients[J]. Phys Med Biol, 2006, 51(14): 3483-3501. DOI: 10.1088/0031-9155/51/14/014
|
[31] |
HARTMANN G H, JÄKEL O, HEEG P, et al. Determination of water absorbed dose in a carbon ion beam using thimble ionization chambers[J]. Phys Med Biol, 1999, 44(5): 1193-1206. DOI: 10.1088/0031-9155/44/5/008
|
[32] |
JÄKEL, HARTMANN, HEEG, et al. Effective point of measurement of cylindrical ionization chambers for heavy charged particles[J]. Phys Med Biol, 2000, 45(3): 599-607. DOI: 10.1088/0031-9155/45/3/303
|
[33] |
SUGAMA Y, NISHIO T, ONISHI H. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam[J]. Med Phys, 2015, 42(7): 3892-3895. DOI: 10.1118/1.4921617
|
[34] |
BARNA S, RESCH A, PUCHALSKA M, et al. Determination of the effective point of measurement of a ionization chamber in light-ion beams [J]. Radio Oncol, 2021,161:S230-S231.
|
[35] |
PALMANS H, MEDIN J, TRNKOVA P, et al. Gradient corrections for reference dosimetry using Farmer-type ionization chambers in single-layer scanned proton fields[J]. Med Phys, 2020, 47(12): 6531-6539. DOI: 10.1002/mp.14554
|
[36] |
GREVILLOT L, OSORIO M J, LETELLIER V, et al. Clinical implementation and commissioning of the MedAustron Particle Therapy Accelerator for non-isocentric scanned proton beam treatments[J]. Med Phys, 2020, 47(2): 380-392. DOI: 10.1002/mp.13928
|
[37] |
GOMA C, SAFAI S, VOROS S. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept[J]. Phys Med Biol, 2017, 62(12): 4991-5005. DOI: 10.1088/1361-6560/aa7008
|
[38] |
KUESS P, HAUPT S, OSORIO J, et al. Characterization of the PTW-34089 type 147 mm diameter large-area ionization chamber for use in light-ion beams[J]. Phys Med Biol, 2020, 65(17): 17NT02. DOI: 10.1088/1361-6560/ab9852
|
[39] |
FARR J B, MOSKVIN V, LUKOSE R C, et al. Technical Note: Design and characterization of a large diameter parallel plate ionization chamber for accurate integral depth dose measurements with proton beams[J]. Med Phys, 2020, 47(7): 3214-3224. DOI: 10.1002/mp.14166
|
[40] |
GOMA C, HOFSTETTER-BOILLAT B, SAFAI S, et al. Experimental validation of beam quality correction factors for proton beams[J]. Phys Med Biol, 2015, 60(8): 3207-3216. DOI: 10.1088/0031-9155/60/8/3207
|
[41] |
GOMA C, STERPIN E. Monte Carlo calculation of beam quality correction factors in proton beams using PENH[J]. Phys Med Biol, 2019, 64(18): 185009. DOI: 10.1088/1361-6560/ab3b94
|
[42] |
BAUMANN K S, KAUPA S, BACH C, et al. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4[J]. Phys Med Biol, 2020, 65(5): 055015. DOI: 10.1088/1361-6560/ab6e53
|
[43] |
WULFF J, BAUMANN K S, VERBEEK N, et al. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams[J]. Phys Med Biol, 2018, 63(11): 115013. DOI: 10.1088/1361-6560/aac30e
|
[44] |
LOURENçO A, BOUCHARD H, GALE R S, et al. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test[J]. Medical Physics, 2018, 46(2): 885-891.
|
[45] |
SORRIAUX J, TESTA M, PAGANETTI H, et al. Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy[J]. Medical physics, 2017, 44(9): 4919-4927. DOI: 10.1002/mp.12434
|
[46] |
GOMA C, ANDREO P, SEMPAU J. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers[J]. Phys Med Biol, 2016, 61(6): 2389-2406. DOI: 10.1088/0031-9155/61/6/2389
|
[47] |
BAUMANN K S, HORST F, ZINK K, et al. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams[J]. Med Phys, 2019, 46(10): 4639-4653. DOI: 10.1002/mp.13737
|
[48] |
KRETSCHMER J, DULKYS A, BRODBEK L, et al. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams[J]. Med Phys, 2020, 47(11): 5890-5905. DOI: 10.1002/mp.14499
|
[49] |
LORIN S, GRUSELL E, TILLY N, et al. Reference dosimetry in a scanned pulsed proton beam using ionisation chambers and a Faraday cup[J]. Phys Med Biol, 2008, 53(13): 3519-3529. DOI: 10.1088/0031-9155/53/13/008
|
[50] |
PEDRONI E, SCHEIB S, BOHRINGER T, et al. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams[J]. Phys Med Biol, 2005, 50(3): 541-561. DOI: 10.1088/0031-9155/50/3/011
|
[51] |
BORTOT D, POLA A, AGOSTEO S, et al. A novel avalanche-confinement TEPC for microdosimetry at nanometric level[J]. Radiation Measurements, 2017, 103: 1-12. DOI: 10.1016/j.radmeas.2017.06.012
|
[52] |
TSUDA S, SATO T, TAKAHASHI F, et al. Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u 12C beam[J]. Physics in Medicine & Biology, 2010, 55(17): 5089-5101.
|
[53] |
CONTE V, AGOSTEO S, BIANCHI A, et al. Microdosimetry of a therapeutic proton beam with a mini-TEPC and a MicroPlus-Bridge detector for RBE assessment[J]. Phys Med Biol, 2020, 65(24): 245018. DOI: 10.1088/1361-6560/abc368
|
[54] |
SCHREWE U J, NEWHAUSER W D, BREDE H J, et al. Experimental kerma coefficients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic, Al2O3, AlN, SiO2 and ZrO2 for neutron energies up to 66 MeV[J]. Phys Med Biol, 2000, 45(3): 651-683. DOI: 10.1088/0031-9155/45/3/307
|
[55] |
TRAN L T, CHARTIER L, PROKOPOVICH D A, et al. 3D-Mesa “Bridge” Silicon Microdosimeter: Charge Collection Study and Application to RBE Studies in C-12 Radiation Therapy[J]. IEEE Transactions on Nuclear Science, 2015, 62(2): 504-511. DOI: 10.1109/TNS.2015.2391102
|
[56] |
MALMER, CYNTHIA J. ICRU Report 63. Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection[J]. Med Phys, 2001, 28 (5): 861.
|
[57] |
SAWAKUCHI G O, FERREIRA F A, MCFADDEN C H, et al. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors[J]. Med Phys, 2016, 43(5): 2485. DOI: 10.1118/1.4947128
|
[58] |
VATNITSKY S M. kQ factors for ionization chamber dosimetry in clinical proton beams[J]. Med Phys, 1996, 23(1): 25.
|
[1] | SHI Yushu, WANG Kang, ZHANG Shihan, SHI Zhoumiao, YU Canjie, DENG Xiao, CHENG Xinbin, PI Lei, ZHANG Shu. Establishment of a Dual Traceability Chain Metrology Standard Device for Micro-Nano Displacement Positioning Calibration[J]. Metrology Science and Technology, 2025, 69(1): 3-10, 46. DOI: 10.12338/j.issn.2096-9015.2024.0274 |
[2] | ZHANG Haomin, GUO Xiaotao, LIU Ke, LIU Tianxin. Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers[J]. Metrology Science and Technology, 2024, 68(8): 51-57. DOI: 10.12338/j.issn.2096-9015.2024.0063 |
[3] | LI Yihua, LU Gang, WANG Kun, WANG Zhipeng, JIN Sunjun, LIU Yijing. Determination and Evaluation of Dosimetric Parameters of Domestic Parallel Plate Ionization Chamber[J]. Metrology Science and Technology, 2024, 68(5): 17-23. DOI: 10.12338/j.issn.2096-9015.2024.0052 |
[4] | ZHANG Kai, BAI Yang, ZHANG Zhimin. An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5[J]. Metrology Science and Technology, 2023, 67(7): 34-39, 33. DOI: 10.12338/j.issn.2096-9015.2023.0194 |
[5] | WANG Hongjun, YE Wen. Research on Micro Vibration Measurement and Analysis Method of Using[J]. Metrology Science and Technology, 2023, 67(6): 44-48. DOI: 10.12338/j.issn.2096-9015.2022.0227 |
[6] | ZHENG Yunshan, NIU Feng, ZHONG Bo. Calibration of Anechoic Chamber Using Inverse Square Law and Its Data Processing[J]. Metrology Science and Technology, 2022, 66(7): 54-57. DOI: 10.12338/j.issn.2096-9015.2020.0433 |
[7] | ZHANG Xuan, LI Dehong, HUANG Jianwei, LIU Bo, LI Dongyang. Performance Study of BeO Optically Simulated Luminescent Dosimetry System for Hp(10) Measurement[J]. Metrology Science and Technology, 2022, 66(5): 15-18, 60. DOI: 10.12338/j.issn.2096-9015.2021.0656 |
[8] | ZHANG Xuan, HUANG Jianwei, LI Dehong, YANG Yang. Uncertainty Evaluation for the Calibration Factor of β-ray Dosemeters[J]. Metrology Science and Technology, 2022, 66(2): 21-24. DOI: 10.12338/j.issn.2096-9015.2021.0228 |
[9] | ZHANG Xi, ZHANG Shaogang, WANG Kun. Study of IAEA TRS-398 and Its Application in Clinical Dosimetry[J]. Metrology Science and Technology, 2021, 65(11): 19-23. DOI: 10.12338/j.issn.2096-9015.2020.0267 |
[10] | LU Guangjun, DU Furong, LIU Xiangheng, BAI Ying, SUN Yong, XIONG Wenbo, SHU Guohua. Research on Responses of Noise Dosimeters to Short-Duration Signals[J]. Metrology Science and Technology, 2021, 65(10): 45-49. DOI: 10.12338/j.issn.2096-9015.2020.0415 |
1. |
张璇,李德红,黄建微. JJG 1197—2023《β辐射个人剂量当量(率)仪检定规程》解读. 中国计量. 2024(04): 51-54 .
![]() | |
2. |
王菲菲,高飞,丁雨阳,王子业,王子琳,刘佳瑞. 质子束布拉格峰测量. 宇航计测技术. 2023(01): 45-49 .
![]() | |
3. |
高翔. 基于Pylinac的医用直线加速器射线质分析方法探究. 计量科学与技术. 2023(03): 29-34 .
![]() |