Volume 66 Issue 4
Jun.  2022
Turn off MathJax
Article Contents
CHEN Wen, GAO Ying, JIANG Zhiyuan, QU Jifeng. Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer[J]. Metrology Science and Technology, 2022, 66(4): 19-25, 39. doi: 10.12338/j.issn.2096-9015.2021.0651
Citation: CHEN Wen, GAO Ying, JIANG Zhiyuan, QU Jifeng. Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer[J]. Metrology Science and Technology, 2022, 66(4): 19-25, 39. doi: 10.12338/j.issn.2096-9015.2021.0651

Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer

doi: 10.12338/j.issn.2096-9015.2021.0651
  • Received Date: 2021-11-25
  • Accepted Date: 2021-12-21
  • Available Online: 2022-04-22
  • Publish Date: 2022-06-02
  • Magnetic field as a vector field with magnitude and direction information, how to achieve high-precision measurement of the magnetic field vector in the existing atomic magnetometer has become an important research direction of the atomic magnetometer. The simultaneous detection of the magnitude and direction of the magnetic field in a single atomic magnetometer unit not only can obtain more magnetic field information and characterize the magnetic source more comprehensively and accurately but also reduces the size of the magnetic measurement device in the mobile platform. This paper divides the vector atomic magnetometer into two technical routes: configuration of applied magnetic field and all-optical detection, and introduces the basic principles, the current research status at home and abroad, and the future research directions of the vector atomic magnetometer. Several major vector magnetometer technical methods are introduced and summarized, including the applied magnetic field compensation method, bias magnetic field modulation method, external radio frequency field measurement method, electromagnetic induction transparent (EIT) detection method, the Bell-Bloom all-optical measurement method, etc. Finally, the future development direction and measurement application prospects of the high-sensitivity vector atomic magnetometer are prospected.
  • loading
  • [1]
    刘腾. 航空反潜的现状和发展综述[J]. 中国新通信, 2019, 21(8): 74-77. doi: 10.3969/j.issn.1673-4866.2019.08.062
    [2]
    王光源, 马海洋, 章尧卿. 航空磁探仪探潜目标磁梯度定位方法[J]. 兵工自动化, 2011, 30(1): 32-34,38. doi: 10.3969/j.issn.1006-1576.2011.01.010
    [3]
    董鹏, 孙哲, 邹念洋, 等. 国外磁探潜装备现状及发展趋势[J]. 舰船科学技术, 2018, 40(11): 166-169. doi: 10.3404/j.issn.1672-7649.2018.11.034
    [4]
    沈平子, 贺青, 张钟华, 等. 电磁计量单位制沿革[J]. 计量技术, 2019(5): 36-42,80.
    [5]
    唐列娟, 殷恭维, 林钢. 磁通门磁力计测地磁研究[J]. 传感器与微系统, 2006, 25(10): 10-12. doi: 10.3969/j.issn.1000-9787.2006.10.004
    [6]
    Le Maire P, Bertrand L, Munschy M, et al. Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate magnetometer: A new method for rapid mapping and upscaling from the field to regional scale[J]. Geophysical Prospecting, 2020, 68(7): 2307-2319. doi: 10.1111/1365-2478.12991
    [7]
    丁鸿佳, 隋厚堂. 磁通门磁力仪和探头研制的最新进展[J]. 地球物理学进展, 2004, 19(4): 743-745. doi: 10.3969/j.issn.1004-2903.2004.04.004
    [8]
    Koch R H, Deak J G, Grinstein G. Fundamental limits to magnetic-field sensitivity of flux-gate magnetic-field sensors[J]. Applied Physics Letters, 1999, 75(24): 3862-3864. doi: 10.1063/1.125481
    [9]
    张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探, 2005, 29(4): 283-287.
    [10]
    Kleiner R, Koelle D, Ludwig F, et al. Superconducting quantum interference devices: State of the art and applications[J]. Proceedings of the IEEE, 2004, 92(10): 1534-1548. doi: 10.1109/JPROC.2004.833655
    [11]
    Hong T, Wang H, Zhang Y, et al. Flux modulation scheme for direct current SQUID readout revisited[J]. Applied Physics Letters, 2016, 108(6): 062601. doi: 10.1063/1.4941665
    [12]
    Crété D, Sène A, Labbé A, et al. Evaluation of Josephson junction parameter dispersion effects in arrays of HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(7): 1-6.
    [13]
    谢胤,罗方雪,张樊,等. 基于铯光泵磁力仪的地磁噪声补偿技术[J]. 计测技术, 2022, 42(1): 26-31.
    [14]
    Alexandrov E B, Balabas M V, Kulyasov V N, et al. Three-component variometer based on a scalar potassium sensor[J]. Measurement Science and Technology, 2004, 15(5): 918-922. doi: 10.1088/0957-0233/15/5/020
    [15]
    Gravrand O, Khokhlov A, JL L M, et al. On the calibration of a vectorial 4He pumped magnetometer[J]. Earth, planets and space, 2001, 53(10): 949-958. doi: 10.1186/BF03351692
    [16]
    Seltzer S J, Romalis M V. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer[J]. Applied physics letters, 2004, 85(20): 4804-4806. doi: 10.1063/1.1814434
    [17]
    Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical review letters, 2002, 89(13): 130801. doi: 10.1103/PhysRevLett.89.130801
    [18]
    Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273. doi: 10.1103/PhysRevLett.31.273
    [19]
    Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110. doi: 10.1063/1.3491215
    [20]
    Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599. doi: 10.1038/nature01484
    [21]
    贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552. doi: 10.3969/j.issn.1000-1158.2021.11.21
    [22]
    董海峰, 李继民. 三轴矢量原子磁力仪综述[J]. 导航与控制, 2018, 17(5): 18-25. doi: 10.3969/j.issn.1674-5558.2018.05.003
    [23]
    Seltzer S J. Developments in alkali-metal atomic magnetometry[M]. Princeton: Princeton University, 2008.
    [24]
    Zigdon T, Wilson-Gordon A D, Guttikonda S, et al. Nonlinear magneto-optical rotation in the presence of a radio-frequency field[J]. Optics express, 2010, 18(25): 25494-25508. doi: 10.1364/OE.18.025494
    [25]
    Fairweather A J, Usher M J. A vector rubidium magnetometer[J]. Journal of Physics E:Scientific Instruments, 1972, 5(10): 986. doi: 10.1088/0022-3735/5/10/018
    [26]
    Vershovskii A K. Project of laser-pumped quantum mx magnetometer[J]. Technical Physics Letters, 2011, 37(2): 140-143. doi: 10.1134/S1063785011020155
    [27]
    Ingleby S J, O’Dwyer C, Griffin P F, et al. Vector magnetometry exploiting phase-geometry effects in a double-resonance alignment magnetometer[J]. Physical Review Applied, 2018, 10(3): 034035. doi: 10.1103/PhysRevApplied.10.034035
    [28]
    Pyragius T, Florez H M, Fernholz T. Voigt-effect-based three-dimensional vector magnetometer[J]. Physical Review A, 2019, 100(2): 023416. doi: 10.1103/PhysRevA.100.023416
    [29]
    伏吉庆, 贺青, 张伟. 激光泵浦的铯-氦磁力仪的信号特征[J]. 计量学报, 2020, 41(3): 354-358. doi: 10.3969/j.issn.1000-1158.2020.03.16
    [30]
    Yudin V I, Taichenachev A V, Dudin Y O, et al. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light[J]. Physical Review A, 2010, 82(3): 033807. doi: 10.1103/PhysRevA.82.033807
    [31]
    Lenci L, Auyuanet A, Barreiro S, et al. Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor[J]. Physical Review A, 2014, 89(4): 043836. doi: 10.1103/PhysRevA.89.043836
    [32]
    Bell W E, Bloom A L. Optically driven spin precession[J]. Physical Review Letters, 1961, 6(6): 280. doi: 10.1103/PhysRevLett.6.280
    [33]
    Bloom A L. Principles of operation of the rubidium vapor magnetometer[J]. Applied Optics, 1962, 1(1): 61-68. doi: 10.1364/AO.1.000061
    [34]
    Patton B, Zhivun E, Hovde D C, et al. All-optical vector atomic magnetometer[J]. Physical review letters, 2014, 113(1): 013001. doi: 10.1103/PhysRevLett.113.013001
    [35]
    陈林, 黄海超, 董海峰. 基于 Cs 原子磁力仪的高灵敏度磁场方向测量方法[J]. 传感器与微系统, 2017(8): 11-13.
    [36]
    Sun W M, Huang Q, Huang Z J, et al. All-optical vector cesium magnetometer[J]. Chinese Physics Letters, 2017, 34(5): 58501. doi: 10.1088/0256-307X/34/5/058501
    [37]
    Huang H C, Dong H F, Hu X Y, et al. Three-axis atomic magnetometer based on spin precession modulation[J]. Applied Physics Letters, 2015, 107(18): 182403. doi: 10.1063/1.4935096
    [38]
    Cai B, Hao C P, Qiu Z R, et al. Herriott-cavity-assisted all-optical atomic vector magnetometer[J]. Physical Review A, 2020, 101(5): 053436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (820) PDF downloads(241) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return