Volume 66 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
BI Xiaolong, XING Chao, WU Bo, GUAN Honghui, BI Chongsheng. Development of Portable Time Interval Measuring Instrument for Liquid Flow Standard Devices[J]. Metrology Science and Technology, 2022, 66(8): 13-17. doi: 10.12338/j.issn.2096-9015.2022.0086
Citation: BI Xiaolong, XING Chao, WU Bo, GUAN Honghui, BI Chongsheng. Development of Portable Time Interval Measuring Instrument for Liquid Flow Standard Devices[J]. Metrology Science and Technology, 2022, 66(8): 13-17. doi: 10.12338/j.issn.2096-9015.2022.0086

Development of Portable Time Interval Measuring Instrument for Liquid Flow Standard Devices

doi: 10.12338/j.issn.2096-9015.2022.0086
  • Received Date: 2022-04-15
  • Accepted Date: 2022-05-10
  • Available Online: 2022-08-31
  • Publish Date: 2022-09-15
  • The timing accuracy of the timing system directly affects the final flow measurement result of liquid flow standard devices, which requires regular maintenance and calibration. The traditional timing verification system is often bulky and difficult to carry and transport. It is generally integrated with the measurement and control system, difficult to disassemble and send for inspection, and lacks the calibration interface suitable for the experimental characteristics of flow standard device. In view of the limitations of the existing timing system verification methods, a portable time interval measuring instrument was designed and developed for the instantaneous flow method liquid flow standard devices, which can measure the time interval range from 1 μs to 10000 s, with measurement accuracy of 10 μs, display resolution not less than 1μs, and the accuracy is not less than 1.0×10−6. The performance verification experiment was carried out based on the hot water flow standard facility of China National Institute of Metrology, and the test results showed that: The relative error of the timing system is better than 0.0024 %, and the relative error of the time interval measuring instrument is better than 4.2×10−7 and its repeatability is better than 1.82×10−7. 10 μs, the display resolution is not less than 1μs, and the accuracy is not less than 1.0×10−6. The performance verification experiment was carried out based on the hot water flow standard facility of China National Institute of Metrology, and the test results showed that: The relative error of the timing system is better than 0.0024%, and the relative error of the time interval measuring instrument is better than 4.2×10−7 and its repeatability is better than 1.82×10−7. Its timing accuracy is high and its performance is stable and reliable, which can effectively meet the verification and testing requirements of the timing system of the liquid flow standard facility. It also plays a positive role in improving the measuring capacity of liquid flow facility and the development of liquid flow measurement technology in the future.
  • loading
  • [1]
    苏彦勋, 梁国伟, 盛健. 流量计量与测试 [M]. 第二版. 北京: 中国计量出版社, 2007.
    [2]
    段慧明. 液体流量标准装置和标准表法流量标准装置[M]. 北京: 中国计量出版社, 2004.
    [3]
    庄园, 张宁宁, 马龙博, 等. 液体流量标准装置流量控制系统设计[J]. 中国测试, 2020, 46(11): 126-131. doi: 10.11857/j.issn.1674-5124.2019080027
    [4]
    谢文强, 燕南飞, 薛琴. 水流量标准装置的设计与研究[J]. 自动化与仪表, 2015, 30(10): 28-31. doi: 10.3969/j.issn.1001-9944.2015.10.007
    [5]
    信彦峰, 崔宝, 贾正红, 等. 水大流量标准装置研制[J]. 计量科学与技术, 2021, 65(10): 67-69,62.
    [6]
    刘莉, 周昶, 高峰, 等. 微小液体流量装置技术发展研究[J]. 计量学报, 2020, 41(z1): 1-6. doi: 10.3969/j.issn.1000-1158.2020.Z1.01
    [7]
    曹久莹, 王科, 顾建飞. 液体流量标准装置换向器检测误差及检定方法分析比较[J]. 中国计量, 2021(9): 109-113.
    [8]
    郑玉桥, 仲林, 沈理. 液体流量标准装置测控系统设计与研究[J]. 中国计量, 2020(11): 84-86.
    [9]
    耿存杰, 张东飞, 陈曹浪. 基于双计时法标准表法水流量标准装置的研制[J]. 工业计量, 2020, 30(2): 47-49. doi: 10.13228/j.boyuan.issn1002-1183.2019.0239
    [10]
    全国流量容量计量技术委员会. 液体流量标准装置: JJG 164-2000[S]. 北京: 中国计量出版社, 2000.
    [11]
    陈炜骄, 孟涛, 李晓鹏. 水流量标准装置期间核查方法研究[J]. 计量技术, 2020(6): 76-79.
    [12]
    李高峰, 王宏伟, 邹德超. 静态质量法液体流量标准装置的不确定度评定[J]. 计量技术, 2014(6): 80-81.
    [13]
    徐望, 陈鑫, 李方能, 等. 高精度时间间隔测量方法分析[J]. 导航定位学报, 2021, 9(4): 71-78. doi: 10.3969/j.issn.2095-4999.2021.04.011
    [14]
    刘威, 任津萱, 曲鑫. 时间间隔测量的高精度技术研究[J]. 单片机与嵌入式系统应用, 2021, 21(12): 46-49.
    [15]
    史慧超, 康希锐, 孟涛. 基于奇异值分解的水流量标准装置状态监测方法研究[J]. 计量学报, 2020, 41(11): 1358-1363. doi: 10.3969/j.issn.1000-1158.2020.11.08
    [16]
    孟涛, 王池, 邢超. 基于主成分分析的流量装置比对传递标准稳定性研究[J]. 计量学报, 2019, 40(5): 823-828. doi: 10.3969/j.issn.1000-1158.2019.05.14
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (456) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return