Volume 66 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LI Qi, DU Biao, ZHANG Zhengdong, CHEN Xiaoxiang, LI Ke, FANG Xu, LI Qingwu, SHU Hui. Application of Fourier Transform Near-Infrared Spectrometer in Gasoline and Diesel Analysis[J]. Metrology Science and Technology, 2022, 66(10): 20-27. doi: 10.12338/j.issn.2096-9015.2022.0171
Citation: LI Qi, DU Biao, ZHANG Zhengdong, CHEN Xiaoxiang, LI Ke, FANG Xu, LI Qingwu, SHU Hui. Application of Fourier Transform Near-Infrared Spectrometer in Gasoline and Diesel Analysis[J]. Metrology Science and Technology, 2022, 66(10): 20-27. doi: 10.12338/j.issn.2096-9015.2022.0171

Application of Fourier Transform Near-Infrared Spectrometer in Gasoline and Diesel Analysis

doi: 10.12338/j.issn.2096-9015.2022.0171
  • Received Date: 2022-07-15
  • Accepted Date: 2022-07-25
  • Available Online: 2022-09-27
  • Publish Date: 2022-10-01
  • Gasoline and diesel are important energy sources for China. The quality of gasoline and diesel has an important impact on environmental governance, public health and personal safety. Therefore, China has made detailed regulations on the scope of various indicators in gasoline and diesel, including octane number, aromatic hydrocarbons, olefins, benzene, distillation range and other 30 indicators. The traditional method for the determination of gasoline and diesel parameters requires the use of cetane number analyzers, gas chromatographs and other instruments, which take a long time and have low efficiency. At present, the Fourier transform near-infrared spectroscopy (FT-NIRS) method can quantitatively analyze the above parameters at the same time, and has the advantages of many measurement parameters, fast speed and high measurement accuracy, and has been rapidly popularized and applied in the petroleum industry. This paper expounds the research progress of FT-NIRS, introduces the basic principle of FT-NIRS, the main structure and key technology of the device, and the method of FT-NIRS to analyze the composition of gasoline and diesel , and the future research and application prospects are prospected.
  • loading
  • [1]
    沈学础. 傅里叶变换光谱学-引进和进展[J]. 物理学进展, 1982(3): 275-322. doi: 10.3321/j.issn:1000-0542.1982.03.002
    Kamaronzaman M , Kahar H , Hassan N, et al. Analysis of biodiesel product derived from waste cooking oil using fourier transform infrared spectroscopy[C]. Netherlands: Elsevier press, 2020.
    Garmarudi A B, Khanmohammadi M, Fard H G, et al. Origin based classification of crude oils by infrared spectrometry and chemometrics[J]. Fuel, 2019, 236: 1093-1099. doi: 10.1016/j.fuel.2018.09.013
    Yuan C D, Emelianov D, Varfolomeev M A. Oxidation Behaviour and Kinetics of Light, Medium and Heavy Crude Oils Characterized by Thermogravimetry Coupled with Fourier-transform Infrared Spectroscopy (TG-FTIR)[J]. Energy & fuels, 2018, 32(4): 5571-5580.
    J B Bates. Fourier Transform spectroscopy[J]. Computer & Mathematics with Application, 1987, 4(2): 73-84.
    Peter R. Griffiths, James A. de Haseth . Fourier Transform Infrared Spectrometry[M]. 2nd edition. New Jersey: John Wiley & Sons, 2007: 6-13.
    Griffiths P R, Sloane H J, Hannah R W. Interferometers vs Monochromators: Separating the Optical and Digital Advantages[J]. Appiled Spectroscopy, 1977, 31(6): 485-495. doi: 10.1366/000370277774464048
    Vidi Saptari. Fourier-Transform Spectroscopy Instrumentation Engineering[M]. Washington: SPIE Press, 2003: 15-45 .
    Batchelor R L, Strong K, Lindenmaier R, et al. A New Bruker IFS 125HR FTIR Spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: Measurements and Comparison with the Existing Bomem DA8 Spectrometer[J]. Journal of atmospheric and oceanic technology, 2009, 26: 1328-1340. doi: 10.1175/2009JTECHA1215.1
    孙云岭, 何伟, 田洪祥, 等. 基于FTIR的柴油机油被燃油稀释的监测研究[J]. 海军工程大学学报, 2018, 30(3): 82-85.
    段伟亚, 郑伟, 李月琪, 等. 傅里叶变换红外光谱法测定车用汽油中典型非常规添加物[J]. 光谱学与光谱分析, 2018, 38(S1): 73-74.
    Riley B J, Lennard C, Fuller S, et al. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting[J]. Forensic Science International, 2020, 266: 555-564.
    Mueller D, Ferrão O M, Marder L, et al. Fourier Transform Infrared Sepectroscopy(FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production[J]. Sensors(Basel), 2013, 13(4): 4258-4271.
    Asemani M, Rabbani A R. Detailed FTIR Spectroscopy Characterization of Crude Oil Extracted Asphaltenes: Curve Resolve of Overlapping Bands[J]. Journal of Petroleum Science and Engineering, 2020, 185: 1-40.
    冯明春, 徐亮, 高闽光, 等. 傅里叶变换红外光谱辐射定标方法的研究[J]. 红外技术, 2012, 34(6): 366-370. doi: 10.3969/j.issn.1001-8891.2012.06.012
    张淳民. 干涉成像光谱技术[M]. 北京: 科学出版社, 2010: 4-11.
    杨琨. 傅里叶变换红外光谱仪若干核心技术研究与应用[D]. 武汉: 武汉大学, 2010.
    Adler F, Maslowski P, Foltynowicz A, et al. Mid-Infrared Fourier Transform Spectroscopy with A Broadband Frequency Comb[J]. Optics Letters, 2011, 18(21): 21861-21872. doi: 10.1364/OE.18.021861
    J. Sin, W. H. Lee, D. Popa, et. al. Assembled Fourier Transform Micro-spectrometer[C]. USA: SPIE press, 2006: 610904-1-610904-4.
    王博雨. 高性能近红外傅里叶变换光谱系统的研究[D]. 北京: 北京交通大学, 2020.
    张明月, 章家保, 杨洪波. 空间傅里叶变化红外光谱仪动镜速度稳定性研究[J]. 红外与激光工程, 2014, 43(4): 1240-1246. doi: 10.3969/j.issn.1007-2276.2014.04.040
    石磊, 刘佳, 郜武, 等. 傅里叶变换红外光谱仪中动镜系统的设计[J]. 光子学报, 2015, 44(4): 430002-430006.
    Gao Zhan. Static Fourier Transform Spectrometer With Spherical Reflectors[J]. Appl. Opt., 2002, 41(3): 560-563. doi: 10.1364/AO.41.000560
    Snively C M, Katzenberger S, Oskarsdottir G, et al. Fourier- transform infrared imaging using a rapid-scan spectrometer[J]. Optical Letters, 1999, 24(24): 1841-1843. doi: 10.1364/OL.24.001841
    盛灏. 傅里叶变换光谱仪干涉信号数据获取研究[D]. 北京: 中国科学院研究生院, 2014.
    Simon A, Metz W, Keens A. Data Acquisition and Interferogram Data Treatment in FT-IT Spectrometer[J]. Vibrational Spectroscopy, 2002, 29(1): 97-101.
    杨秀坤, 钟明亮, 景晓军, 等. 基于主成分分析-二阶导数光谱成像的红外显微图像分析[J]. 光学学报, 2012, 32(7): 110-114.
    相里斌, 袁艳. 单边干涉图的数据处理方法研究[J]. 光子学报, 2006, 35(12): 1869-1875.
    邢廷, 王模昌, 龚惠兴. Mertz 法傅里叶光谱计算过程的改进[J]. 光学学报, 1999, 19(3): 354-359.
    Fellgett P B. The Multiplex Advantages[D]. Cambridge: University of Cambridge, 1949.
    Brault J W. New Approach to High-precision Fourier Transform Spectrometer Design[J]. Applied Optics, 1996, 35(16): 2891-2896. doi: 10.1364/AO.35.002891
    Mu T, Zhang C, Zhao B. Analysis of a Moderate Resolution Fourier Transform Imaging Spectrometer[J]. Optics Communications, 2009, 282: 1699-1705. doi: 10.1016/j.optcom.2009.01.022
    Roy S, Gemest J, Giaccari P, et al. Hybrid Sampling Approach for Imaging Fourier Transform Spectrometer[J]. Applied Optics, 2007, 46(35): 8482-8487. doi: 10.1364/AO.46.008482
    N. Matallah, H. Sauer, F. Goudail, et. al. Design and First Results of a Fourier Transform Imaging Spectrometer in 3-5 μm ramge[C]. USA: SPIE press, 2011: 816715-1 - 816715-13.
    Sarkissian E, Bowman K W. Application of a Nonuniform Spectral Resampling Transform in Fourier-transform Spectrometry[J]. App. Opt., 2003, 42(6): 1122-1131. doi: 10.1364/AO.42.001122
    Linkemann J , Romero-Borja F , Tittel H O. FT Spectrometer with Fixed Mirrors Using Fizeau Fringes[C]. USA: SPIE, 1992.
    Treffers R R. Signal-to-Noise Ratio in Fourier Spectroscopy[J]. Applied Optics, 1977, 16(12): 3103-3106. doi: 10.1364/AO.16.003103
    Jovanov V, Bunte E, Stiebig H, et al. Transparent Fourier Transform Spectrometer[J]. Optical letters, 2011, 36(2): 274-276. doi: 10.1364/OL.36.000274
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (390) PDF downloads(74) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint