Volume 66 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
JIA Zhili, PU Cheng, REN Lingling. Study on Absolute Measurement Method of Fluorescence Quantum Efficiency[J]. Metrology Science and Technology, 2022, 66(9): 17-22, 32. doi: 10.12338/j.issn.2096-9015.2022.0190
Citation: JIA Zhili, PU Cheng, REN Lingling. Study on Absolute Measurement Method of Fluorescence Quantum Efficiency[J]. Metrology Science and Technology, 2022, 66(9): 17-22, 32. doi: 10.12338/j.issn.2096-9015.2022.0190

Study on Absolute Measurement Method of Fluorescence Quantum Efficiency

doi: 10.12338/j.issn.2096-9015.2022.0190
  • Available Online: 2022-09-05
  • Publish Date: 2022-09-30
  • Fluorescence quantum efficiency is the ratio of the number of photons emitted by fluorescent materials to the number of photons absorbed, which is used to evaluate the luminescence performance of fluorescent materials. In this paper, aiming at the problems of fluorescence quantum efficiency measurement by the absolute method in reference materials preparation, we studied the four-pass cuvette wide-band matching consistency test method, which eliminates the influence of inconsistent transmission ratio of cuvette incident surface on the measurement of fluorescence quantum efficiency. The measurement method of segmented spectrum acquisition was studied to eliminate the influence of excitation on the emission band and ensure the accuracy of emission band integration. The effect of solvent evaporation in the cuvette on fluorescence quantum efficiency was studied. The sealing of the cuvette can eliminate the influence of volume and concentration fluctuations in the measurement of fluorescence quantum efficiency. These studies provide guidance for the accurate measurement of fluorescence quantum efficiency by the absolute method.
  • loading
  • [1]
    RURACK K. Fluorescence Quantum Yields: Methods of Determination and Standards[J]. Springer Series Fluorescence, 2008, 5: 101-145.
    [2]
    CROSBY G A, DEMAS J N. Measurement of photoluminescence quantum yields[J]. Journal of Physical Chemistry, 1971, 75(8): 31-35.
    [3]
    SUZUKI K, KOBAYASHI A, KANEKO S, et al. Reevaluation of absolute luminescence quantum yields of standard solutions and a back-thinned CDD detector[J]. Physical Chemistry Chemical Physics, 2009, 11(42): 9850-9860. doi: 10.1039/b912178a
    [4]
    W RTH C, LOCHMANN C, SPIELES M, et al. Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions[J]. Applied Spectroscopy, 2010, 64(7): 733-741. doi: 10.1366/000370210791666390
    [5]
    WURTH C, GRABOLLE M, PAULI J, et al. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields[J]. Analytical Chemistry, 2011, 83(9): 3431-3439. doi: 10.1021/ac2000303
    [6]
    W RTH C, PAULI J, LOCHMANN C, et al. Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared[J]. Analytical Chemistry, 2012, 84(3): 1345-1352. doi: 10.1021/ac2021954
    [7]
    MAKOWIECKI J, MARTYNSKI T. Absolute photoluminescence quantum yield of perylene dye ultra-thin films[J]. Organic Electronics, 2014, 15(10): 2395-2399. doi: 10.1016/j.orgel.2014.06.028
    [8]
    李建潮, 李征, 李坚, 等. 玻璃比色皿: GB/T 26791-2011[S] . 北京: 中国标准出版社, 2011.
    [9]
    BROUWER, ALBERT M. Standards for photoluminescence quantum yield measurements in solution[J]. Pure & Applied Chemistry, 2011, 83(12): 2213-2228.
    [10]
    PALSSON L O, MONKMAN A P. Measurements of Solid-State Photoluminescence Quantum Yields of Films Using a Fluorimeter[J]. Advanced Materials, 2002, 14(10): 757-758. doi: 10.1002/1521-4095(20020517)14:10<757::AID-ADMA757>3.0.CO;2-Y
    [11]
    LEYRE S, COUTINO-GONZALEZ E, JOOS J J, et al. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup[J]. Review of Scientific Instruments, 2014, 85(12): 123115. doi: 10.1063/1.4903852
    [12]
    HASEBE N, SUZUKI K, HORIUCHI H, et al. Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument[J]. Analytical Chemistry, 2015, 87(4): 2360-2366. doi: 10.1021/ac5042268
    [13]
    WEI Y, OU H. Photoluminescence Quantum Yield of Fluorescent Silicon Carbide Determined by an Integrating Sphere Setup[J]. ACS Omega, 2019, 4(13): 15488-15495. doi: 10.1021/acsomega.9b01753
    [14]
    SUZUKI K, ENDO A, YOSHIHARA T, et al. Photophysical study of iridium complexes by absolute photoluminescence quantum yield measurements using an integrating sphere[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7415: 741504.
    [15]
    MELHUISH W H. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute[J]. Journal of Physical Chemistry B, 1961, 65(2): 229-235. doi: 10.1021/j100820a009
    [16]
    ADAMS M J, HIGHFIELD J G, KIRKBRIGHT G F. Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry[J]. Analytical Chemistry, 1977, 49(12): 1850-1852. doi: 10.1021/ac50020a053
    [17]
    GAIGALAS A K, WANG L. Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector[J]. Journal of Research of the National Institute of Standards & Technology, 2008, 113(1): 17-28.
    [18]
    WURTH C, GRABOLLE M, PAULI J, et al. Relative and absolute determination of fluorescence quantum yields of transparent samples[J]. Nature Protocols, 2013, 8(8): 1535-1550. doi: 10.1038/nprot.2013.087
    [19]
    ISAK S J, EYRING E M. Fluorescence quantum yield of cresyl violet in methanol and water as a function of concentration[J]. Journal of Physical Chemistry, 1992, 96(4): 383-384.
    [20]
    彭涛, 焦学诗玛, 郑丕苗, 等. 基于新型纳米材料的荧光法快速测量谷胱甘肽[J]. 计量科学与技术, 2021, 65(5): 40-45. doi: 10.12338/j.issn.2096-9015.2020.9026
    [21]
    BINDHU C V, HARILAL S S, VARIER G K, et al. Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique[J]. Journal of Physics D Applied Physics, 1999, 29(4): 1074-1079.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1171) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return