Volume 66 Issue 11
Jan.  2023
Turn off MathJax
Article Contents
WANG Fang, SHI Yushu, ZHOU Ying. Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy[J]. Metrology Science and Technology, 2022, 66(11): 16-19. doi: 10.12338/j.issn.2096-9015.2022.0244
Citation: WANG Fang, SHI Yushu, ZHOU Ying. Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy[J]. Metrology Science and Technology, 2022, 66(11): 16-19. doi: 10.12338/j.issn.2096-9015.2022.0244

Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy

doi: 10.12338/j.issn.2096-9015.2022.0244
  • Received Date: 2022-10-13
  • Accepted Date: 2022-11-15
  • Rev Recd Date: 2022-11-08
  • Available Online: 2022-12-01
  • Publish Date: 2023-01-17
  • As an important analytical tool at the nano-scale, the accuracy of the length measurement value of the transmission electron microscopy (TEM) will directly affect the measurement results of samples. In this study, the length measurement error and length measurement repeatability of the high-resolution TEM were calibrated using single-crystal silicon lattice standards, and the uncertainty of the length measurement error was evaluated. To illustrate the applicability of the calibration method, calibration experiments were conducted on three different models of high-resolution TEMs in the study. The results show that the calibration method is widely representative and can achieve an accurate evaluation of TEMs with measured quantities traceable to the silicon lattice constant, which provides technical assurance for accurate measurements in the field of nanotechnology.
  • loading
  • [1]
    Williams D B, Carter C B. Transmission electron microscopy [M]. New York: Springer Science Business Media, 2009.
    [2]
    Ndubuisi G Orji, Ronald G Dixson, Domingo I Garcia-Gutierrez, et al. TEM calibration methods for critical dimension standards[J]. Proceedings of SPIE, 2007, 6518: 651810-651811. doi: 10.1117/12.713368
    [3]
    Syota Fujinaka, Yukio Sato, Ryo Teranishi, et al. Understanding of scanning-system distortions of atomic-scale scanning transmission electron microscopy images for accurate lattice parameter measurements[J]. Journal of Materials Science, 2020(55): 8123-8133.
    [4]
    Nathan D Burrows, Lee Penn. Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects[J]. Microscopy and Microanalysis, 2013, 19(6): 1542-1553. doi: 10.1017/S1431927613013354
    [5]
    Dai G L, Heidelmann M, K¨ubel C, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013(24): 085001.
    [6]
    Dai G L, Fan Z, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015(26): 115006.
    [7]
    Dai G L, Hahm K, Bosseand H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017(28): 065010.
    [8]
    Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019(28): 030601.
    [9]
    Castelazo I A. Mise en pratique for the definition of the metre in the SI [R]. Versailles, France: Consultative Committee for Length, 2019.
    [10]
    Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of the SI metre using silicon lattice parameter and x-ray interferometry for nanometre and sub-nanometre scale applications in dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019.
    [11]
    Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of SI metre using silicon lattice and transmission electron microscopy for dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019.
    [12]
    Dai G L, Koenders L, Pohlenz F. Accurate and traceable calibration of one-dimensional gratings[J]. Measurement Science and Technology, 2005(16): 1241-1249.
    [13]
    Misumi I, Gonda S, Kurosawa T. Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope[J]. Measurement Science and Technology, 2003(14): 463-471.
    [14]
    WANG F, SHI Y S, ZHANG S, et al. Automatic measurement of silicon lattice spacings in high-resolution transmission electron microscopy images through 2D discrete Fourier transform and inverse discrete Fourier transform[J]. Nanomanufacturing and Metrology, 2022(5): 119-126.
    [15]
    王芳, 施玉书, 张树, 等. 基于硅晶格常数的纳米线宽计量技术[J]. 计量科学与技术, 2022, 66(4): 13-18,47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (422) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return