Volume 67 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LIU Yang, LI Jianshuang, HE Mingzhao, CAO Shiying, MIAO Dongjing, XIE Zhiqi. Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology[J]. Metrology Science and Technology, 2023, 67(4): 18-27. doi: 10.12338/j.issn.2096-9015.2022.0245
Citation: LIU Yang, LI Jianshuang, HE Mingzhao, CAO Shiying, MIAO Dongjing, XIE Zhiqi. Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology[J]. Metrology Science and Technology, 2023, 67(4): 18-27. doi: 10.12338/j.issn.2096-9015.2022.0245

Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology

doi: 10.12338/j.issn.2096-9015.2022.0245
  • Received Date: 2022-10-13
  • Accepted Date: 2022-11-15
  • Rev Recd Date: 2022-11-15
  • Available Online: 2022-11-17
  • Publish Date: 2023-04-18
  • The use of incremental laser interferometers as measurement standards in large-scale metrology is common, but these can easily result in interrupted light during the measurement process, significantly limiting the flexibility of measurements. Recently, high-precision absolute ranging methods using femtosecond optical frequency combs as light sources have rapidly advanced. In particular, the dual-comb asynchronous optical sampling absolute ranging method, which employs two femtosecond optical frequency combs with slight repetition frequency differences, facilitates absolute distance measurements over long ranges, with high accuracy and high update rates. This paper provides a detailed summary of the current progress in large-scale dual-optical comb absolute ranging, beginning with a review of large-scale laser absolute ranging and femtosecond optical frequency comb absolute ranging. To overcome existing limitations in large-scale metrology, we conducted in-depth research on the construction and optimization of dual-comb sources, the optimization of ranging accuracy, the design of ranging systems, and the verification of ranging performance. Lastly, we present future directions for the application of dual-comb absolute ranging in large-scale metrology.
  • loading
  • [1]
    秦宜智. 实施《计量发展规划(2021-2035年)》全面开启加快计量发展新征程[J]. 中国计量, 2022(6): 5-9.
    谭久彬. 超精密测量与高端装备制造质量[J]. 中国工业和信息化, 2020 (6): 18-23.
    朱美娜. 构建国家现代先进测量体系 助推制造业转型升级[J]. 中国质量技术监督, 2018(11): 50-55, 1.
    Bobroff N. Recent advances in displacement measuring interferometry[J]. Measurement Science and Technology, 1993, 4(9): 907.
    所睿, 范志军, 李岩, 等. 双频激光干涉仪技术现状与发展[J]. 激光与红外, 2004, (4): 251-253.
    Kim S. W. Combs rule[J]. Nature Photonics, 2009, 3(6): 313-314.
    Newbury N. R. Searching for applications with a fine-tooth comb[J]. Nature Photonics, 2011, 5(4): 186-188.
    Schmitt R, Peterek M, Morse E, et al. Advances in large-scale metrology–review and future trends[J]. CIRP Annals, 2016, 65(2): 643-665.
    张国雄. 坐标测量技术发展方向[J]. 红外与激光工程, 2008, 37(S1): 1-5.
    Gao W, Kim S, Bosse H, et al. Measurement technologies for precision positioning[J]. CIRP Annals, 2015, 64(2): 773-796.
    Schödel R. Modern Interferometry for Length Metrology[M]. IOP Publishing, 2018.
    陈千颂, 杨成伟, 潘志文, 等. 激光飞行时间测距关键技术进展[J]. 激光与红外, 2002 (1): 7-10.
    宋建辉, 袁峰, 丁振良. 脉冲激光测距中高精度时间间隔的测量[J]. 光学精密工程, 2009, 17(5): 1046-1050.
    Fujima I, Iwasaki S, Seta K. High-resolution distance meter using optical intensity modulation at 28 GHz[J]. Measurement Science and Technology, 1998, 9(7): 1049.
    Lay O P, Dubovitsky S, Peters R D, et al. MSTAR: a submicrometer, absolute metrology system[J]. Optics Letters, 2003, 28(11): 890-892.
    Vu T T, Higuchi M, Aketagawa M. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation[J]. Measurement Science and Technology, 2016, 27(10): 105201.
    Zhang S, Yan L, Chen B, et al. Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement[J]. Optics Express, 2017, 25(1): 472-485.
    Meiners-Hagen K, Burgarth V, Abou-Zeid A. Profilometry with a multi-wavelength diode laser interferometer[J]. Measurement Science and Technology, 2004, 15(4): 741.
    Stone J A, Stejskal A, Howard L. Absolute interferometry with a 670-nm external cavity diode laser[J]. Applied Optics, 1999, 38(28): 5981-5994.
    Dale J, Hughes B, Lancaster A. J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Optics Express, 2014, 22(20): 24869-24893.
    Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m[J]. Measurement Science and Technology, 2015, 26(8): 084003.
    Yu W, Pfeiffer P, Morsali A, et al. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement[J]. Optics Letters, 2019, 44(20): 5069-5072.
    Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.
    Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155.
    Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters, 2009, 34(13): 1982-1984.
    Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express, 2011, 19(6): 4881-4889.
    Cui M, Schouten R N, Bhattacharya N, et al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser[J]. Journal of the European Optical Society-Rapid publications, 2008(3): 08003.
    Zhu J G, Cui P F, Guo Y, et al. Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement[J]. Optics Express, 2015, 23(10): 13069-13081.
    Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 716-720.
    Wu X J, Zhang J T, Wei H Y, et al. Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb[J]. Review of Scientific Instruments, 2012, 83(7): 073107.
    Chanthawong N, Takahashi S, Takamasu K, et al. A new method for high-accuracy gauge block measurement using 2 GHz repetition mode of a mode-locked fiber laser[J]. Measurement Science and Technology, 2012, 23(5): 054003.
    Joo K. N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954-5960.
    Cui M, Zeitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer[J]. Optics Express, 2011, 19(7): 6549-6562.
    Wu H. Z, Cao S. Y, Zhang F M, et al. Spectral interferometry based absolute distance measurement using frequency comb[J]. Acta Physica Sinica, 2015, 64(2): 020601.
    Zhu Z, Wu G. Dual-Comb Ranging[J]. Engineering, 2018, 4(6): 772-778.
    吴冠豪, 周思宇, 杨越棠, 等. 双光梳测距及其应用[J]. 中国激光, 2021, 48(15): 250-267.
    Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.
    Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19): 18501-18509.
    Lee J, Han S, Lee K, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 2013, 24(4): 045201.
    王国超, 颜树华, 杨俊, 等. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析[J]. 物理学报, 2013, 62(7): 100-110.
    Wu G. H, Zhou Q, Shen L F, et al. Experimental optimization of the repetition rate difference in dual-comb ranging system[J]. Applied Physics Express, 2014, 7(10): 106602.
    Wu G H, Xiong S L, Ni K, et al. Parameter optimization of a dual-comb ranging system by using a numerical simulation method[J]. Optics Express, 2015, 23(25): 32044-32053.
    Zhang H, Wei H, Wu X, et al. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements[J]. Measurement Science and Technology, 2014, 25(12): 125201.
    Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics Express, 2015, 23(11): 14057-14069.
    Li Y, Cai Y, Li R, et al. Large-scale absolute distance measurement with dual free-running all-polarization-maintaining femtosecond fiber lasers[J]. Chinese Optics Letters, 2019, 17(9): 091202.
    纪荣祎, 周维虎, 黎尧, 等. 激光跟踪仪高精度绝对测距系统[J]. 光学精密工程, 2016, 24(10s): 148-155.
    董登峰, 周维虎, 纪荣祎, 等. 激光跟踪仪精密跟踪系统的设计[J]. 光学精密工程, 2016, 24(2): 309-318.
    劳达宝, 崔成君, 王国民, 等. 飞秒激光跟踪仪跟踪光路的优化设计与分析[J]. 中国激光, 2019, 46(3): 192-199.
    Lin B, Zhao X, He M, et al. Dual-comb absolute distance measurement based on a dual-wavelength passively mode-locked laser[J]. IEEE Photonics Journal, 2017, 9(6): 1-8.
    赫明钊, 林百科, 李建双. 基于双波长频率梳的绝对测距系统研究[J]. 计量学报, 2017, 38(S1): 51-55.
    林百科, 曹士英, 袁小迪, 等. 赫兹相对线宽的双光梳绝对距离系统[J]. 计量科学与技术, 2021(2): 44-48.
    Zhu Z, Xu G, Ni K, et al. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement[J]. Optics Express, 2018, 26(5): 5747-5757.
    Zhu Z, Ni K, Zhou Q, et al. Two-color phase-stable dual-comb ranging without precise environmental sensing[J]. Optics Express, 2019, 27(4): 4660-4671.
    Zhou S, Lin C, Yang Y, et al. Multi-pulse sampling dual-comb ranging method[J]. Optics Express, 2020, 28(3): 4058-4066.
    Fellinger J, Winkler G, Aldia P C, et al. Simple approach for extending the ambiguity-free range of dual-comb ranging[J]. Optics Letters, 2021, 46(15): 3677-3680.
    Jiang R, Zhou S, Wu G. Aliasing-free dual-comb ranging system based on free-running fiber lasers[J]. Optics Express, 2021, 29(21): 33527-33535.
    容驷驹. 双飞秒激光频率梳重复频率锁定技术研究[D]. 广州: 广东工业大学, 2022.
    武腾飞, 韩继博, 白毓, 等. 双光梳绝对距离测量实验研究[J]. 计测技术, 2022, 42(3): 50-55.
    Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses[J]. Optics Express, 2015, 23(20): 25874-25882.
    Hu D, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2021, 482: 126566.
    Nguyen Q K, Kim S, Han S H, et al. Improved Self-Calibration of a Multilateration System Based on Absolute Distance Measurement[J]. Sensors, 2020, 20(24): 7288.
    Zhou S, Le V, Xiong S, et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243-251.
    Liu Y, Xia W, He M, et al. Strategies of precision enhancement for dual-comb time-of-flight distance measurement with nonlinear detection by numerical simulation[C]. SPIE, 2021.
    Liu Y, Xia W, He M, et al. Experimental realization and characterization of a two–color dual–comb system for practical large–scale absolute distance measurements[J]. Optics and Lasers in Engineering, 2022, 151: 106900.
    夏文泽, 刘洋, 赫明钊, 等. 双光梳非线性异步光学采样测距中关键参数的数值分析[J]. 物理学报, 2021, 70(18): 53-62.
    Liu Y, Xie Z, He M, et al. Preliminary Investigations of Absolute Distance Measurement by the Dual-Comb System with a Fiber Interferometric Scheme[C]. Singapore, 2022.
    刘洋, 赫明钊, 谢志奇, 等. 一种多轴全光纤双光梳大尺寸绝对测距系统: CN113805189B[P]. 2022-06-17.
    Xie Z, Liu Y, He M, et al. Investigations on the non-ambiguity range extension of dual-comb ranging by repetition range variation[C]. SPIE, 2022.
    Liu Y, Röse A, Prellinger G, et al. Combining Harmonic Laser Beams by Fiber Components for Refractivity–Compensating Two-Color Interferometry[J]. Journal of Lightwave Technology, 2020, 38(7): 1945-1952.
    Liu Y, Li J, Li J, et al. Proof-of-concept study of the virtual optical scale bar by the pulse-to-pulse interferometry[J]. Optics Express, 2022, 30(2): 2063-2077.
    Liu Y, Yang L, Guo Y, et al. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement[J]. Optics and Lasers in Engineering, 2018, 101: 35-43.
    Liu Y, Lin J, Yang L, et al. Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser[J]. Optics Express, 2018, 26(20): 26618-26632.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (629) PDF downloads(140) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint