Volume 67 Issue 5
May  2023
Turn off MathJax
Article Contents
MENG Chen, WANG Hao, WU Kun. Analytical Research on Uncertainty of Calibration Equation Coefficient of[J]. Metrology Science and Technology, 2023, 67(5): 52-57. doi: 10.12338/j.issn.2096-9015.2022.0276
Citation: MENG Chen, WANG Hao, WU Kun. Analytical Research on Uncertainty of Calibration Equation Coefficient of[J]. Metrology Science and Technology, 2023, 67(5): 52-57. doi: 10.12338/j.issn.2096-9015.2022.0276

Analytical Research on Uncertainty of Calibration Equation Coefficient of

doi: 10.12338/j.issn.2096-9015.2022.0276
  • Received Date: 2022-11-17
  • Accepted Date: 2022-12-01
  • Rev Recd Date: 2023-07-02
  • Available Online: 2023-07-06
  • Publish Date: 2023-05-31
  • The build-up force standard machine, due to its simple and reliable structure as well as its appreciable precision, has found extensive industrial applications. Such machines typically consist of high-precision force transducers complemented by well-engineered structures. The system's output, defined by a force transfer standard calibrated by a deadweight force standard machine, is typically characterized using polynomial expressions. The choice of the calibration equation's order and the associated uncertainty in its coefficients are significant factors influencing the machine's accuracy. However, different countries' regulations and standards do not explicitly prescribe the equation's order. This study, therefore, explores the impact of the calibration equation on force transmission uncertainty. We demonstrate a negative correlation between the uncertainty in calibration equation coefficients and the number of calibration points. By carrying out numerical experiments with polynomial functions of different orders, we compute residuals and uncertainties for the linear coefficient. A comparison of the predicted values from the testing and training datasets suggests that a first-order polynomial function can be reliably used as the calibration equation for force sensors.
  • loading
  • [1]
    全国力值硬度计量技术委员会. 标准测力仪: JJG 144-2007 [S]. 北京: 中国计量出版社, 2007.
    [2]
    全国力值硬度计量技术委员会. 力传感器: JJG 391-2009 [S]. 北京: 中国计量出版社, 2009.
    [3]
    全国力值硬度计量技术委员会. 力标准机: JJG 734-2001 [S]. 北京: 中国计量出版社, 2001.
    [4]
    全国力值硬度计量技术委员会. 叠加式力标准机: JJG 1116-2015 [S]. 北京: 中国计量出版社, 2015.
    [5]
    ISO/TC. Metallic materials-Calibration of force-proving instruments used for the verification of uniaxial testing machines: ISO 376: 2011[S]. Geneva: International Standards Organization, 2011.
    [6]
    ASTM International. Standard Practices for Calibration and Verification for Force-Measuring Instruments: ASTM E74-18[S]. USA: ASTM International, 2018.
    [7]
    全国法制计量管理计量技术委员会. 测量不确定度评定与表示: JJF1059.1-2012[S]. 北京: 中国质检出版社, 2012.
    [8]
    LI J L, LI L, LIU R M, et al. Application of univariate linear regression analysis in data fitting of pressure sensor[J] . Metrology and measurement technology, 2022, 42(2): 40-49.
    [9]
    周宁. 关于传感器动态校准技术研究的探讨[J]. 计测技术, 2021, 41(2): 119-123.
    [10]
    汪斌, 卢晓华. 一元线性校准曲线不确定度评定与适用条件的讨论[J]. 计量科学与技术, 2022, 66(7): 45-49, 44.
    [11]
    刘庆, 邵志新. 回归分析的直线拟合不确定度探讨[J]. 中国测试, 2009, 35(3): 41-44.
    [12]
    盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第四版. 北京: 高等教育出版社, 2008: 244-261.
    [13]
    倪育才. 实用测量不确定度评定[M]. 第六版. 北京: 中国标准出版社, 2020: 82-85.
    [14]
    何晓群, 刘文卿. 应用回归分析[M]. 第五版. 北京: 中国人民大学出版社, 2019: 28-31.
    [15]
    谢琍, 唐甜, 王晓瑞. 线性空间自回归模型的不同惩罚函数下参数估计的比较及其实证分析[J]. 数理统计与管理, 2019, 38(5): 823-835.
    [16]
    谢雅琪, 杨庚. 多项式回归的差分隐私保护算法[J]. 计算机技术与发展, 2022, 32(8): 103-109, 128.
    [17]
    付凌晖, 王惠文. 多项式回归的建模方法比较研究[J]. 数理统计与管理, 2004, 23(1): 48-52.
    [18]
    梁杰, 李春富, 葛铭, 等. 非线性部分最小二乘方法的研究与应用[J]. 杭州电子科技大学学报, 2009, 29(6): 95-98.
    [19]
    龚循强, 刘国祥, 李志林, 等. 总体最小二乘拟合问题求解方法的比较研究[J]. 测绘科学, 2014, 39(9): 29-33.
    [20]
    王安怡, 陶本藻. 顾及自变量误差的回归分析理论和方法[J]. 勘察科学技术, 2005, 1(3): 29-32.
    [21]
    李雄军. 对X和Y方向最小二乘线性回归的讨论[J]. 计量技术, 2005 (1): 50-52.
    [22]
    俞锦成. 关于整体最小二乘问题的可解性[J]. 南京师大学报: 自然科学版, 1996, 19(1): 13-16.
    [23]
    黄开斌, 俞锦成. 整体最小二乘问题的解集与极小范数解[J]. 南京师大学报: 自然科学版, 1997, 20(4): 1-5.
    [24]
    张国华. 最小二乘法线性回归分析及其测量不确定度探讨[J]. 中国石油和化工标准与质量, 2020, 40(15): 72-73.
    [25]
    白杰, 胡红波. 计量中回归模型参数值及其不确定度评估[J]. 计量学报, 2022, 43(12): 1683-1688.
    [26]
    赵延治, 牛智, 李贵涛, 等. 力传感器校准精度模拟与实验分析[J]. 仪表技术与传感器, 2014, 1(11): 15-17, 20.
    [27]
    高富荣, 谭洪辉, 黄振宇. 叠加式力标准机的长期稳定性与准确度[J]. 中国测试, 2010, 36(4): 28-30.
    [28]
    张伟, 张智敏, 倪守忠. 叠加式力标准机复现力值影响因素的研究[J]. 计量技术, 2016 (7): 65-68.
    [29]
    焦献瑞. 测力仪校准方法的比较[J]. 航空计测技术, 2000, 20(4): 10-12, 25.
    [30]
    王昱, 胡翔. 力标准机发展综述[J]. 计量与测试技术, 2020, 47(7): 61-63.
    [31]
    胡红波, 刘爱东, 左爱斌, 等. 加速度计校准的贝叶斯不确定度评估[J]. 计量科学与技术, 2021, 65(5): 101-107, 61.
    [32]
    靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (375) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return