Volume 67 Issue 5
May  2023
Turn off MathJax
Article Contents
FEI Yue, LI Jianxin, WANG Di, WANG Zhidong, WU Xiao, GAO Yunhua. A Review on the Advancements in Molecular Point-of-Care Tests[J]. Metrology Science and Technology, 2023, 67(5): 3-8. doi: 10.12338/j.issn.2096-9015.2022.0280
Citation: FEI Yue, LI Jianxin, WANG Di, WANG Zhidong, WU Xiao, GAO Yunhua. A Review on the Advancements in Molecular Point-of-Care Tests[J]. Metrology Science and Technology, 2023, 67(5): 3-8. doi: 10.12338/j.issn.2096-9015.2022.0280

A Review on the Advancements in Molecular Point-of-Care Tests

doi: 10.12338/j.issn.2096-9015.2022.0280
  • Received Date: 2022-11-21
  • Accepted Date: 2022-12-28
  • Rev Recd Date: 2023-06-28
  • Available Online: 2023-07-03
  • Publish Date: 2023-05-31
  • The Molecular Point-of-Care Test (POCT) represents a rapidly evolving nucleic acid testing method primarily grounded on isothermal amplification and microfluidic technologies. This technique provides numerous advantages including rapid testing, compact hardware, and simplicity in operation, thereby paving the way for immediate "sample in, result out" diagnostics. It serves as a powerful tool for the containment and management of epidemics such as COVID-19. Currently available molecular POCT diagnostic tools can detect various pathogenic microorganisms like human papillomavirus, human immunodeficiency virus, hepatitis C virus, and Neisseria gonorrhoeae, all while providing fast results and convenient portability. Despite its advantages, this technology remains in the nascent stages of industrial development, necessitating enhancements in the accuracy and consistency of molecular POCT products. Improvement in the relevant quality control measures and standards is required, with the establishment of a standardized validation and assessment system. This paper presents a comprehensive review of the most recent advancements in molecular POCT technologies, devices, and applications, which are underpinned by isothermal amplification and microfluidic principles. It also offers a forecast on the prospective trajectory of this technology.
  • loading
  • [1]
    涂芸萍, 杨殿龙, 张中平, 等. 基于微流控芯片的等温扩增技术[J]. 生物工程学报, 2022, 38(3): 943-960.
    [2]
    余方友, 王冰洁. 便携式病原微生物分子诊断技术应用现状和展望[J]. 中华检验医学杂志, 2021, 44(2): 94-99.
    [3]
    Avendaño C, Patarroyo M A. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections[J]. Int J Mol Sci, 2020, 21(21): 7981. doi: 10.3390/ijms21217981
    [4]
    姜苏, 李一荣. 等温扩增技术的原理及应用[J]. 中华检验医学杂志, 2020, 43(5): 591-596.
    [5]
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): E63. doi: 10.1093/nar/28.12.e63
    [6]
    Daher R K, Stewart G, Boissinot M, et al. Recombinase Polymerase Amplification for Diagnostic Applications[J]. Clin Chem, 2016, 62(7): 947-958. doi: 10.1373/clinchem.2015.245829
    [7]
    Fang R, Li X, Hu L, et al. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens[J]. J Clin Microbiol, 2009, 47(3): 845-847. doi: 10.1128/JCM.01528-08
    [8]
    张丽月, 王姗姗, 何祯硕, 等. 全球等温扩增技术发展态势研究[J]. 武汉大学学报(医学版), 2023, 44(6): 647-653.
    [9]
    Tantiamornkul K, Mataradchakul T . Comparison of nested-polymerase chain reaction and loop-mediated isothermal amplification in detection of Cryptosporidium spp and Giardia duodenalis from water sources in Phayao Province, Thailand: K Tantiamornkul, T Mataradchakul[J]. SEAMEO Regional Tropical Medicine and Public Health Network, 2019(1): 13-24.
    [10]
    Huang W E, Lim B, Hsu C C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2[J]. Microb Biotechnol, 2020, 13(4): 950-961. doi: 10.1111/1751-7915.13586
    [11]
    黄月明, 牟颖, 周骏, 等. 环介导等温扩增联合横向流动试纸条可视化检测HPV16及HPV58方法的建立[J]. 中国病原生物学杂志, 2021, 16(6): 624-629.
    [12]
    Vanhomwegen J, Kwasiborski A, Diop A, et al. Development and clinical validation of loop-mediated isothermal amplification (LAMP) assay to diagnose high HBV DNA levels in resource-limited settings[J]. Clin Microbiol Infect, 2021, 27(12): 1858. e1859-1858. e1815.
    [13]
    邵军军, 周广青, 常惠芸. 环介导等温扩增技术及其在分子诊断中的应用[J]. 实用诊断与治疗杂志, 2007(6): 450-453.
    [14]
    梁卉, 李贱成, 徐克前. 新型冠状病毒(SARS-CoV-2)核酸检测技术[J]. 生命的化学, 2021, 41(12): 2588-2597.
    [15]
    Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst, 2018, 144(1): 31-67.
    [16]
    刘可欣, 王倩颖, 杨森, 等. 重组酶扩增技术及其在病原检测中的应用[J]. 特产研究, 2022, 44(2): 145-149, 158.
    [17]
    Sun Y, Yu L, Liu C, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a[J]. J Transl Med, 2021, 19(1): 74. doi: 10.1186/s12967-021-02741-5
    [18]
    Kersting S, Rausch V, Bier F F, et al. A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia[J]. Anal Biochem, 2018, 550: 54-60. doi: 10.1016/j.ab.2018.04.014
    [19]
    Munawar M A. Critical insight into recombinase polymerase amplification technology[J]. Expert Rev Mol Diagn, 2022, 22(7): 725-737. doi: 10.1080/14737159.2022.2109964
    [20]
    施宁雪, 靳晶豪, 陈孝仁. 重组酶聚合酶扩增技术及其在生命科学领域的应用[J]. 江西农业学报, 2021, 33(10): 62-72.
    [21]
    曲中天. 用于分子即时诊断(POCT)的微流控系统研究 [D]. 合肥: 中国科学技术大学, 2021.
    [22]
    Trinh T N D, Lee N Y. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing[J]. Analyst, 2021, 146(10): 3101-3113. doi: 10.1039/D1AN00180A
    [23]
    Coelho B, Veigas B, Fortunato E, et al. Digital Microfluidics for Nucleic Acid Amplification[J]. Sensors (Basel), 2017, 17(7): 1495. doi: 10.3390/s17071495
    [24]
    王符皓. POCT核酸诊断集成微流控系统研究与实现 [D]. 北京: 北京化工大学, 2020.
    [25]
    朱灿灿. 病原体核酸一体化并行检测微流控芯片研究 [D]. 合肥: 中国科学技术大学, 2019.
    [26]
    曹宁, 周新丽. 离心微流控芯片技术用于核酸等温扩增的研究进展[J]. 工业微生物, 2020, 50(6): 48-55.
    [27]
    Xiong H, Ye X, Li Y, et al. Rapid Differential Diagnosis of Seven Human Respiratory Coronaviruses Based on Centrifugal Microfluidic Nucleic Acid Assay[J]. Anal Chem, 2020, 92(21): 14297-14302. doi: 10.1021/acs.analchem.0c03364
    [28]
    姚延禄, 曹宁, 周新丽. 基于环介导等温扩增的离心式微流控芯片检测3种致病菌[J]. 食品与发酵工业, 2022, 48(5): 255-261.
    [29]
    黎柱均. 集成式微流控芯片数字化等温扩增分析用于大肠埃希菌尿路感染快速诊断 [D]. 广州: 广州医科大学, 2020.
    [30]
    Liu D, Shen H, Zhang Y, et al. A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection[J]. Lab Chip, 2021, 21(10): 2019-2026. doi: 10.1039/D0LC01222J
    [31]
    Ulep T H, Day A S, Sosnowski K, et al. Interfacial Effect-Based Quantification of Droplet Isothermal Nucleic Acid Amplification for Bacterial Infection[J]. Sci Rep, 2019, 9(1): 9629. doi: 10.1038/s41598-019-46028-8
    [32]
    Tang Z, Kong N, Zhang X, et al. A materials-science perspective on tackling COVID-19[J]. Nat Rev Mater, 2020, 5(11): 847-860. doi: 10.1038/s41578-020-00247-y
    [33]
    Rane T D, Chen L, Zec H C, et al. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP) [J]. Lab Chip, 2015, 15(3): 776-782. doi: 10.1039/C4LC01158A
    [34]
    Tan Y L, Huang A Q, Tang L J, et al. Multiplexed droplet loop-mediated isothermal amplification with scorpion-shaped probes and fluorescence microscopic counting for digital quantification of virus RNAs[J]. Chem Sci, 2021, 12(24): 8445-8451. doi: 10.1039/D1SC00616A
    [35]
    Ye X, Li Y, Wang L, et al. All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions[J]. Talanta, 2021, 221: 121462. doi: 10.1016/j.talanta.2020.121462
    [36]
    黄恩奇. 集成式微流控芯片PCR阵列用于快速检测多重呼吸道感染病原 [D]. 广州: 广州医科大学, 2021.
    [37]
    Boutin C-A, Grandjean-Lapierre S, Gagnon S, et al. Comparison of SARS-CoV-2 detection from combined nasopharyngeal/oropharyngeal swab samples by a laboratory-developed real-time RT-PCR test and the Roche SARS-CoV-2 assay on a cobas 8800 instrument[J]. Journal of clinical virology: The official publication of the Pan American Society for Clinical Virology, 2020, 132: 104615. doi: 10.1016/j.jcv.2020.104615
    [38]
    Dong L, Zhou J, Niu C, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR[J]. Talanta, 2021, 224: 121726. doi: 10.1016/j.talanta.2020.121726
    [39]
    Niu C, Dong L, Gao Y, et al. Quantitative analysis of RNA by HPLC and evaluation of RT-dPCR for coronavirus RNA quantification[J]. Talanta, 2021, 228: 122227. doi: 10.1016/j.talanta.2021.122227
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (669) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return