Volume 67 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
JIANG Chen. Establishment of Verification Device for Natural Gas Flow Integration Meters[J]. Metrology Science and Technology, 2023, 67(2): 42-47. doi: 10.12338/j.issn.2096-9015.2022.0308
Citation: JIANG Chen. Establishment of Verification Device for Natural Gas Flow Integration Meters[J]. Metrology Science and Technology, 2023, 67(2): 42-47. doi: 10.12338/j.issn.2096-9015.2022.0308

Establishment of Verification Device for Natural Gas Flow Integration Meters

doi: 10.12338/j.issn.2096-9015.2022.0308
  • Received Date: 2022-12-28
  • Accepted Date: 2023-02-02
  • Rev Recd Date: 2023-02-20
  • Available Online: 2023-03-04
  • Publish Date: 2023-02-18
  • The natural gas flow integration meter is a secondary instrument used for natural gas metering. Its function is to process and calculate the signals transmitted from primary instruments on site, such as temperature transmitters, pressure transmitters, gas chromatographs, flowmeters, etc., and finally calculate the natural gas flow or energy under standard conditions. In order to ensure the accuracy and consistency of the measurement results of the measuring instruments and maintain the economic interests of both the supplier and the demander, it is necessary to carry out the verification and calibration of the flow integration meters. According to JJF 1003-2016 Flow Integration Meters, a set of verification devices for natural gas flow integration meters has been established. The device is composed of three multi-functional calibrators, which output the corresponding standard signals of the temperature transmitter, pressure transmitter, and flowmeter to the flow integration meter. After receiving the standard signals, the flow integration meter converts them into the target values, and the measurement errors of each channel are calculated according to JJG 1003-2016. Through the repeatability experiment of temperature, pressure, and flow channels, the uncertainty of the measurement results has been evaluated. The expanded uncertainty of the verification device is 0.14%, which can be used to verify and calibrate flow integration meters with accuracy class 0.5 and below. The standard device has passed the measurement standard assessment organized by State Administration for Market Regulation and solved the problem of tracing the value of the flow integration meter at the natural gas station. Based on the verification device, the matters needing attention and problems in the verification process of the flow integration meters are discussed, and suggestions for the revision of the verification regulations are put forward.
  • loading
  • [1]
    王池, 李春辉, 王京安, 等. 天然气能量计量系统及方法[J]. 计量学报, 2008, 29(5): 403-406.
    [2]
    常宏岗, 段继芹. 中国天然气计量技术及展望[J]. 天然气工业, 2020, 40(1): 110-118.
    [3]
    卫杰, 李宁. 天然气的计量方法与发展[J]. 煤炭与化工, 2020, 43(4): 143-147,150.
    [4]
    李春辉, 徐明, 沈超, 等. 天然气能量计量不确定度评估[J]. 计量学报, 2020, 41(12A): 22-27.
    [5]
    常季成. 国内外天然气计量技术现状及发展趋势[J]. 仪器仪表标准化与计量, 2019(2): 36-38.
    [6]
    张瑞达, 梁杨朋, 李睿奇. 混合钟罩式气体流量标准装置测控系统[J]. 计量科学与技术, 2021, 65(10): 58-62.
    [7]
    冯建, 朱敏. 一种瞬时流速流量计模块研究与设计[J]. 计量科学与技术, 2021, 65(8): 29-32. doi: 10.12338/j.issn.2096-9015.2020.0427
    [8]
    徐洪敏, 袁平凡, 王海兰, 等. 中缅管道采用超声流量计及气相色谱分析仪实现管输天然气能量计量的前景[J]. 中国计量, 2016(2): 74-76.
    [9]
    刘琦, 孙冲, 徐赫男. 天然气能量计量误差影响因素分析[J]. 化工管理, 2021(34): 27-28,49.
    [10]
    邹伟. 浅析天然气取样常用方法及其对分析结果的影响[J]. 计量科学与技术, 2021, 65(7): 65-68.
    [11]
    蔡浩晖, 蒋金生. 实施天然气能量计量对管道企业的影响研究[J]. 石油工业技术监督, 2019, 35(3): 20-23.
    [12]
    黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6,12.
    [13]
    陈赓良. 天然气能量计量的溯源性与不确定度评定[J]. 石油与天然气化工, 2017, 46(1): 83-90.
    [14]
    徐孝轩, 李奇, 荆栋. 多气源天然气输配管网的能量计量方法[J]. 天然气工业, 2018, 38(1): 116-122.
    [15]
    裴全斌, 青青, 陈正文, 等. 天然气流量计算机计量测试评价方法探讨[J]. 计量科学与技术, 2021, 65(12): 35-39.
    [16]
    沈超, 刘博韬. 流量计算机校准测试方法[J]. 计量与测试技术, 2016, 43(4): 46-47.
    [17]
    朱安庆. 流量计算机校准的常见问题及解决方法[J]. 石油石化节能, 2017, 7(5): 17-19.
    [18]
    国家质量监督检验检疫总局. 流量积算仪检定规程: JJG 1003-2016 [S]. 北京: 中国质检出版社, 2017.
    [19]
    国家质量监督检验检疫总局. 计量标准考核规范: JJF 1033-2016 [S]. 北京: 中国质检出版社, 2017.
    [20]
    国家质量监督检验检疫总局. 用涡轮流量计测量天然气流量: GB/T 21391-2008 [S]. 北京: 中国标准出版社, 2008.
    [21]
    国家质量监督检验检疫总局. 计量标准命名与分类编码: JJF 1022-2014 [S]. 北京: 中国计量出版社, 2014.
    [22]
    国家质量监督检验检疫总局. 天然气计量系统技术要求: GB/T 18603-2014 [S]. 北京: 中国标准出版社, 2015.
    [23]
    国家质量监督检验检疫总局. 天然气压缩因子的计算 第1部分: 导论和指南: GB/T 17747.1-2011 [S]. 北京: 中国标准出版社, 2012.
    [24]
    国家质量监督检验检疫总局. 天然气压缩因子的计算 第2部分: 用摩尔组成进行计算: GB/T 17747.2-2011 [S]. 北京: 中国标准出版社, 2012.
    [25]
    国家质量监督检验检疫总局. 天然气压缩因子的计算 第3部分: 用物性值进行计算: GB/T 17747.3-2011 [S]. 北京: 中国标准出版社, 2012.
    [26]
    杨有涛,彭蕾. 钟罩式气体流量标准装置量值统一和传递的研究[J]. 计量科学与技术, 2021, 65(7): 46-50.
    [27]
    赵玉敏,梁月,李毅,等. 基于流量传感器4000次变温度循环试验的研究[J]. 计量科学与技术, 2022, 66(2): 65-68.
    [28]
    邹轶, 于立, 李承志. 烟草专用透气度流量盘检定装置的研究[J]. 计量科学与技术, 2023, 67(1): 55-59, 54.
    [29]
    高峰,李虹杰,刘文艺. 湿度对皂膜流量计计量特性的影响研究[J]. 计量科学与技术, 2021, 65(8): 62-65.
    [30]
    毕晓龙,邢超,吴波,等. 用于液体流量标准装置的便携式时间间隔测试仪的设计与研制[J]. 计量科学与技术, 2022, 66(8): 13-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(8)

    Article Metrics

    Article views (457) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return