Volume 67 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHAO Ying, GUO Xinxin, ZHENG Haorui. Research on Calibration of Resistance Tube Based on Acoustic Simulation[J]. Metrology Science and Technology, 2023, 67(5): 58-63. doi: 10.12338/j.issn.2096-9015.2023.0002
Citation: ZHAO Ying, GUO Xinxin, ZHENG Haorui. Research on Calibration of Resistance Tube Based on Acoustic Simulation[J]. Metrology Science and Technology, 2023, 67(5): 58-63. doi: 10.12338/j.issn.2096-9015.2023.0002

Research on Calibration of Resistance Tube Based on Acoustic Simulation

doi: 10.12338/j.issn.2096-9015.2023.0002
  • Received Date: 2023-01-04
  • Accepted Date: 2023-03-15
  • Rev Recd Date: 2023-06-02
  • Available Online: 2023-07-24
  • Publish Date: 2023-05-31
  • The calibration of the measurement error of the sound absorption coefficient, using the impedance tube (transfer function method), employs the standard sample method. The excitation of a plane wave is produced by the broadband sound source within the tube. By measuring the transfer function of the response signals of two transducers, the sound absorption coefficient of the standard sample is determined. The measurement error of the sound absorption coefficient is then deduced by comparing this with the standard value of the standard sample. As the operating frequency range of the impedance tube under calibration may not correspond with the calibration frequency range mentioned in the certificate of the standard sample, it is essential to determine the impedance tube's working frequency range prior to calibration. This further aids in establishing the calibration frequency range, thereby avoiding calibration result inaccuracies. This study encompasses a theoretical analysis and simulation of the cut-off frequency of the plane wave sound field generated within the impedance tube, and a simulation of the sound absorption coefficient of two impedance tubes with distinct diameters (or side lengths) and varied transducer spacing. A mathematical model that establishes a relationship between the tube diameter (or side length), transducer spacing, and frequency range has been derived from these simulations. This model serves as a useful tool providing guidance for the calibration of the measurement error of the impedance tube's sound absorption coefficient.
  • loading
  • [1]
    朱有剑, 张勇, 熊文波. 基于传递函数法的阻抗管吸声系数测量系统研究[J]. 声学与电子工程, 2012, 4(108): 27-31.
    [2]
    ASTM. Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method : ASTM E2611 – 09[S]. ASTM, 2009.
    [3]
    杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2001.
    [4]
    张福林, 董玲抒, 李忠盛, 等. 材料声学特性的典型参数测试技术研究进展[J]. 装备环境工程, 2020, 17(8): 131-137.
    [5]
    国家质量监督检验检疫总局. 阻抗管校准规范(传递函数法): JJF 1446[S]. 北京: 中国标准出版社, 2014.
    [6]
    国家质量监督检验检疫总局. 声学 阻抗管中吸声系数和声阻抗的测量 第2部分: 传递函数法: GB/T 18696.2[S]. 北京: 中国标准出版社, 2002.
    [7]
    詹福良, 徐俊伟. Virtual. Lab Acoustics 声学仿真计算从入门到精通[M]. 西安: 西北工业大学出版社, 2013.
    [8]
    吴胜举, 张明铎. 声学测量原理与方法[M]. 北京: 科学出版社, 2014.
    [9]
    张哲, 王小鹏, 陈天宁, 等. 适用于高温阻抗管的修正传递函数法[J]. 西安交通大学学报, 2014, 48(5): 118-122.
    [10]
    J Y Chung , D A Blaser. Transfer function method of measuring in-duct acoustic properties. I. Theroy [J]. JASA, 1980, 68(3): 907-913.
    [11]
    刘冬冰. 垂直/斜入射阻抗管吸隔声测量仪的设计与仿真[D]. 长春: 吉林大学, 2018.
    [12]
    张苗, 漆琼芳, 罗建军. 吸声系数的传递函数法仿真计算[J]. 声学技术, 2021, 40(4): 527-531.
    [13]
    ISO. Acoustics-Determinatioin of sound absorption coefficient and impedance in impedance tubes Part 2 Transfer-function method : ISO 10534-2[S]. ISO, 1998.
    [14]
    刘美宏, 彭立民, 朱广勇. 传递函数法和混响室法测量木质穿孔板吸声性能的对比研究[C]. 北京: 工业建筑杂志社, 2016.
    [15]
    姚广春, 代阳, 马训鸣, 等. 基于传递函数法的吸声系数测试系统设计与实现[J]. 仪表技术与传感器, 2022(11): 55-59.
    [16]
    朱蓓丽. 双传声器技术测量材料的吸声系数[J]. 声学技术, 1990(4): 16.
    [17]
    李东旭, 张霞, 聂嘉兴, 等. 吸声系数的先进现场测试技术发展概述[J]. 装备环境工程, 2020, 17(12): 45-54.
    [18]
    朱有剑, 张勇, 熊文波, 等. 基于传递函数法吸声系数测量误差分析[J]. 噪声与振动控制, 2012(S1): 178-184.
    [19]
    魏伟力. 噪声变送器电流-声压级系统灵敏度校准方法[J]. 计量科学与技术, 2021, 65(8): 51-54.
    [20]
    庞业珍. 基于传递函数的吸声隔声测量方法与应用研究[D]. 大连: 大连理工大学, 2006.
    [21]
    王煜, 纪红刚, 臧春华, 等. 高精度传声器相位校准设备的研发[J]. 计量与测试技术, 2018, 45(2): 34-37.
    [22]
    Toth P, Schram C. Simultaneous Calibration of Multiple Microphones for Both Phase and Amplitude in an Impedance Tube [J]. Archives of Acoustics, 2015, 39( 2) : 277 -287. doi: 10.2478/aoa-2014-0032
    [23]
    R Boonen, P Sas, W Lauriks, et al. Calibration of the two microphone transfer function method to measure acoustic impedance in a wide frequency range[J]. International Conference on Noise & Vibration Engineering, 2006, 6624 ( 1) : 151 -152.
    [24]
    张正坤, 冯秀娟, 何龙标, 等. 光学法测量驻波管中声压量值的优化研究[J]. 计量技术, 2020(5): 40-45.
    [25]
    孙中政, 韩旭, 王宇飞. 多阶声模态分解的改进阻抗管法测量材料的高频吸声系数[J]. 声学学报, 2022, 47(2): 229-240.
    [26]
    王伟, 倪计民, 肖国权, 等. 双传声器声压测量的计算误差分析[J]. 计量技术, 2007(3): 24-26.
    [27]
    鲁光军, 杜富荣. 在PULSE系统中测量声压级的技巧[J]. 计量科学与技术, 2021, 65(11): 8-10.
    [28]
    杨嘉莉, 毛宏宇, 何龙标, 等. 高声压谐振耦合管共振频率的优化设计[J]. 计量科学与技术, 2021, 65(3): 66-70.
    [29]
    杨鹏. Helmholtz腔-微穿孔板复合结构的吸声性能[J]. 电声技术, 2022, 46(12): 36-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (180) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return