Volume 67 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
GAO Xiang. An Investigation into Methods of Beam Quality Analysis for Medical Linear Accelerators Based on Pylinac[J]. Metrology Science and Technology, 2023, 67(3): 29-34. doi: 10.12338/j.issn.2096-9015.2023.0003
Citation: GAO Xiang. An Investigation into Methods of Beam Quality Analysis for Medical Linear Accelerators Based on Pylinac[J]. Metrology Science and Technology, 2023, 67(3): 29-34. doi: 10.12338/j.issn.2096-9015.2023.0003

An Investigation into Methods of Beam Quality Analysis for Medical Linear Accelerators Based on Pylinac

doi: 10.12338/j.issn.2096-9015.2023.0003
  • Received Date: 2023-01-04
  • Accepted Date: 2023-02-03
  • Rev Recd Date: 2023-01-16
  • Available Online: 2023-03-14
  • Publish Date: 2023-03-18
  • The accuracy and stability of the beam quality in medical linear accelerators (LINAC) are crucial for the precision of radiation therapy. This study introduces a more convenient and accurate method for quantitatively analyzing beam characteristics using the open-source Pylinac program. Beam quality information was obtained using thimble ionization chambers and electronic portal imaging devices (EPIDs). The Python-based Pylinac program was used for quantitative analysis of the absolute output dose, flatness, symmetry, and percentage depth dose curves. Furthermore, the results of the EPID analysis were compared with those of mainstream detection analysis instruments, such as MapCheck. The program was able to accurately calculate the absolute output dose and other parameters, with no significant differences observed between the results of the EPID and MapCheck (p < 0.05). The gamma (1 mm/1%) value indicated a high level of consistency between the measured curves and the model data (γ = 96.2%). Pylinac can accurately evaluate the beam quality characteristics of accelerators and can serve as a tool for daily, monthly, and annual inspections.
  • loading
  • [1]
    蒋国梁. 三维适形放疗和调强放疗[J]. 肿瘤, 2003(4): 261-262. doi: 10.3781/j.issn.1000-7431.2003.04.001
    [2]
    胡逸民. 放射治疗面对的困难及可能的技术对策——肿瘤放射物理的进展[C]//全国医用辐射防护与安全学术研讨会论文汇编. 北京: 中华医学会, 2004.
    [3]
    ABSHIRE D, LANG M K. The Evolution of Radiation Therapy in Treating Cancer[J]. Seminars in oncology nursing, 2018, 34(2): 151-157. doi: 10.1016/j.soncn.2018.03.006
    [4]
    黄培, 何侠. 基于患者安全的肿瘤医院放疗精准质控管理实践及思考[J]. 中华放射肿瘤学杂志, 2019(10): 796-798. doi: 10.3760/cma.j.issn.1004-4221.2019.10.018
    [5]
    邓祯祥. VMAT在眼部肿瘤放射治疗中的剂量学优势[J]. 计量技术, 2020(2): 60-62,68.
    [6]
    齐洪志, 杨玉刚, 郝洁, 等. SunCHECK软件在调强放疗计划剂量验证中的应用[J]. 中国医学物理学杂志, 2022, 39(3): 289-294.
    [7]
    时飞跃, 王敏, 秦伟, 等. DoseLab软件检测CT图像噪声的程序改进及应用分析[J]. 中国医学物理学杂志, 2021, 38(3): 327-330.
    [8]
    Klein E E, Hanley J, Bayouth J. Task Group 142 report: quality assurance of medical accelerators[J]. Medical Physics, 2009(9): 4197-4212.
    [9]
    高大地, 王佳舟, 罗吉, 等. 基于Pylinac的放射治疗QA数字化分析系统[J]. 计算机系统应用, 2021(30): 95-101.
    [10]
    吴志强, 陈元华, 王佳舟, 等. 基于患者出射EPID剂量验证的在体调强放疗质控技术研究[J]. 中国癌症杂志, 2020, 30(9): 689-693.
    [11]
    余利星, 翟睿, 龚晓云, 等. 基于磁性纳米材料分离的肿瘤标志物HSP90α质谱分析方法[J]. 计量技术, 2020(5): 14-18,78.
    [12]
    国家卫生健康委员会. 原发性肺癌诊疗指南(2022年版)[J]. 中国合理用药探索, 2022, 19(9): 1-28.

    CALVO ORTEGA J F, HERMIDA-LÓPEZ M, MORAGUES-FEMENÍA S, et al. PO-1777: Validation of the Pylinac software platform for MLC log file analysis[J]. Radiotherapy and Oncology, 2020, 152: S989-S990.
    [13]
    佚名. 乳腺癌诊疗指南(2022年版)[J]. 中国合理用药探索, 2022, 19(10): 1-26.

    ZAILA A, ADILI M, BAMAJBOOR S. Pylinac: A toolkit for performing TG-142 QA related tasks on linear accelerator[J]. Abstracts from the 1st European Congress of Medical Physics, 2016, 32: 292-293.
    [14]
    中国抗癌协会妇科肿瘤专业委员会. 子宫颈癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 474-489.
    [15]
    张曦, 张绍刚, 王坤. IAEA TRS-398临床剂量学应用[J]. 计量科学与技术, 2021, 65(11): 19-23.
    [16]
    王志鹏. 医用电子束水吸收剂量绝对测量及量值传递方法研究[D]. 北京: 北京交通大学, 2021.
    [17]
    HUQ M S, HWANG M S, TEO T P, et al. A dosimetric evaluation of the IAEA-AAPM TRS483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with IAEA TRS-398, AAPM TG51, and TG51 Addendum protocols[J/OL]. Medical physics, 2018. [2023-01-04]. DOI: 10.1002/mp.13092.
    [18]
    ZINK K. Twenty years after – das neue Dosimetrieprotokoll IAEA TRS-398 am Horizont sichtbar![J]. Zeitschrift fur medizinische Physik, 2020, 30(4): 249-251. doi: 10.1016/j.zemedi.2020.09.007
    [19]
    MUIR B R, ROGERS D W O. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types[J]. Medical Physics, 2014, 41(11): 111701. doi: 10.1118/1.4893915
    [20]
    高翔, 余燕娟, 石丽婉. 胶片剂量仪与半导体探测器在小野剂量数据测量中的比较分析[J]. 计量学报, 2020, 41(7): 873-878.
    [21]
    黄成伟, 丁力, 张中伟, 等. 医用加速器测量分析软件的验证[J]. 计量技术, 2008(9): 46-49.
    [22]
    KOULOULIAS V E. Quality assurance in radiotherapy[J]. European journal of cancer, 2003, 39(4): 415-422. doi: 10.1016/S0959-8049(02)00461-6
    [23]
    付庆国, 戴建荣, 朱小东, 等. 国内外肿瘤放疗QA与QC的相关规范介绍[J]. 中华放射肿瘤学杂志, 2018, 27(2): 218-221.
    [24]
    齐雅平, 霍万里, 金孙均, 等. 质子放射治疗参考剂量研究进展概述[J]. 计量科学与技术, 2022, 66(6): 38-44.
    [25]
    CHAN M F, WITZTUM A, VALDES G. Integration of AI and Machine Learning in Radiotherapy QA[J]. Frontiers in artificial intelligence, 2020, 3: 577620. doi: 10.3389/frai.2020.577620
    [26]
    LAM D, ZHANG X, LI H, et al. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning[J]. Medical physics, 2019, 46(10): 4666-4675. doi: 10.1002/mp.13752
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (443) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return