Volume 67 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
XING Hao, HE Zibin, WU Mengjuan, WANG Biyun, WANG Kai, CHEN Quan, LU Congjun, ZHANG Huiru, LIU Yumei. Research Progress in Electric Field Intensity Calibration Techniques[J]. Metrology Science and Technology, 2023, 67(3): 20-28, 42. doi: 10.12338/j.issn.2096-9015.2023.0035
Citation: XING Hao, HE Zibin, WU Mengjuan, WANG Biyun, WANG Kai, CHEN Quan, LU Congjun, ZHANG Huiru, LIU Yumei. Research Progress in Electric Field Intensity Calibration Techniques[J]. Metrology Science and Technology, 2023, 67(3): 20-28, 42. doi: 10.12338/j.issn.2096-9015.2023.0035

Research Progress in Electric Field Intensity Calibration Techniques

doi: 10.12338/j.issn.2096-9015.2023.0035
  • Received Date: 2023-02-15
  • Accepted Date: 2023-03-21
  • Rev Recd Date: 2023-03-18
  • Available Online: 2023-04-11
  • Publish Date: 2023-03-18
  • This paper presents the current development trends of electric field intensity calibration technologies domestically and internationally. The research status of TEM cells, GTEM cells, coaxial cone TEM cells, monocone TEM cells, microwave anechoic chambers, and electromagnetic reverberation chambers in universities, research institutes, and metrology institutions worldwide is emphasized. The design structure and performance parameters of various devices are introduced. A comparison is made between the characteristics, applications, and suitable environments of the various electric field intensity calibration equipment mentioned in this paper. Lastly, based on the research progress of electric field intensity calibration technology, the development trend of on-site electric field intensity calibration to meet the rapid calibration requirements of field strength sensors under production line field conditions is proposed.
  • loading
  • [1]
    IEEE . IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz: IEEE Std 1309-2013[S]. IEEE, 2013.
    [2]
    Graw ford M L. Generation of Standard EM Fields Using TEM Transmission Cells[J]. Electromagnetic Compatibility IEEE Transactions on, 1974, EMC-16(4): 189-195. doi: 10.1109/TEMC.1974.303364
    [3]
    刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94.
    [4]
    石照民, 张江涛, 潘仙林, 等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术, 2021, 65(5): 30-35. doi: 10.12338/j.issn.2096-9015.2020.9011
    [5]
    李耿, 陈璀, 安宁, 等. 电磁环境测试系统灵敏度计算及影响因素分析[J]. 计量与测试技术, 2022, 49(8): 40-44. doi: 10.15988/j.cnki.1004-6941.2022.8.012
    [6]
    陈钧, 曾博, 邓俊泳, 等. 样品长期稳定性等引入的不确定度对电磁兼容能力验证计划结果评价影响的探讨[J]. 计量科学与技术, 2022, 66(11): 64-67,72. doi: 10.12338/j.issn.2096-9015.2021.0252
    [7]
    孙萍萍. 军用电子方舱电磁屏蔽效能的测量不确定度分析与评定[J]. 计量与测试技术, 2022, 49(5): 106-109,114.
    [8]
    黄丹梅. 超高压电场和低压大电流磁场屏蔽方法研究[D]. 重庆: 重庆大学, 2009.
    [9]
    CRAWFORDML, WORKAMN J L, THOMAS C L. Expanding the bandwidth of TEM cells for EMC measurements[J]. IEEE Trans Electromagn Compat, 1978, 20(EMC-3): 368-375.
    [10]
    李建轩, 赵治华, 周忠元, 等. 基于TEM小室的宽频高场强校准系统设计[J]. 海军工程大学学报, 2018, 30(6): 17-22. doi: 10.7495/j.issn.1009-3486.2018.06.004
    [11]
    郭启勇, 梁琼崇, 骆德汉, 等. 基于TEM小室的电场探头校准及其不确定度评定[J]. 广东工业大学学报, 2016, 33(3): 19-25. doi: 10.3969/j.issn.1007-7162.2016.03.004
    [12]
    陈增标. 预应力智能张拉系统的电磁兼容测试探讨[J]. 计量与测试技术, 2021, 48(4): 90-93.
    [13]
    张柯. 电磁流量计不同信号输出差异浅析[J]. 计量与测试技术, 2020, 47(7): 54-56.
    [14]
    宋春江, 冯骁尧, 戴飞. 基于波导缝隙天线的TEM室频率扩展方法[J]. 北京航空航天大学学报, 2018, 44(4): 785-791.
    [15]
    陈军, 万发雨, 范盼. 新型宽带横电磁波小室的设计[J]. 合肥工业大学学报(自然科学版), 2016, 39(7): 938-942.
    [16]
    王伟, 杨静, 聂鑫, 等. 一种开放式横电磁波传输室的研制[J]. 现代应用物理, 2019, 10(4): 61-66.
    [17]
    余绍斌, 方志坚. 用于电磁兼容测量的GTEM小室[J]. 电子质量, 2007(10): 76-78. doi: 10.3969/j.issn.1003-0107.2007.10.024
    [18]
    贾正森, 王磊, 张江涛, 等. 交流约瑟夫森量子电压在电磁计量中的应用[J]. 计量科学与技术, 2020(8): 44-50,60. doi: 10.3969/j.issn.1000-0771.2020.08.09
    [19]
    汤仕平, 蒋全兴, 周忠元, 等. 宽带GTEM小室场强校准装置和不确定度评定 [C]. 中国仪器仪表学会, 2004.
    [20]
    庄苏宁. 环境电磁干扰模拟技术的研究[J]. 计量技术, 2019(3): 56-58.
    [21]
    王睿. 场强探头校准用同心锥的研制[D]. 南京: 东南大学, 2017.
    [22]
    Nakayama M, Kobayashi T. Electric field strength estimation in boundary region between near and far fieles[C]. IEEE, 2012.
    [23]
    沈平子, 贺青, 张钟华, 等. 电磁计量单位制沿革[J]. 计量技术, 2019(5): 36-42,80.
    [24]
    黄承祖, 齐万泉, 刘星汛, 等. 同心锥形TEM室结构设计及性能研究[J]. 宇航计测技术, 2019, 39(3): 22-26. doi: 10.12060/j.issn.1000-7202.2019.03.05
    [25]
    尹彦臻, 檀臻, 万丽芬. 污水用电磁流量计现场校准符合性研究[J]. 计量技术, 2019(1): 44-46,28.
    [26]
    Sakharov K Y, Mikheev O V, Turkin V A. National Standard of Russian Federation for reproduction and transmission of unit sizes of pulse electric and magnetic intensities in uhrawide band range[C]. The 18th High-Power Electromagnetics Conference, 2012.
    [27]
    Kunz K S, Hudson H G, Breakall J K, et al. Lawrence Livermore National Laboratory Electromagnetic Measurement Facility[J]. IEEE Transactions on Electromagnetic Compatibility, 1987, EMC-29(2): 93-103. doi: 10.1109/TEMC.1987.304348
    [28]
    Lee J G , Kang J S , Kim J H , et al. Time domain antenna range at KRISS[C]. IEEE, 2008.
    [29]
    蒋廷勇, 燕有杰, 刘小龙, 等. 短电磁脉冲标准场装置实验室比对[J]. 计量学报, 2019, 40(6): 1107-1111. doi: 10.3969/j.issn.1000-1158.2019.06.27
    [30]
    杨超, 孟萃, 李鹏辉, 等. 镜面单锥TEM小室电磁场标准装置[J]. 高电压技术, 2016, 42(5): 1476-1482. doi: 10.13336/j.1003-6520.hve.20160412002
    [31]
    燕有杰, 蒋廷勇, 刘小龙, 等. 镜面单锥结构超宽谱短脉冲电场标准装置[J]. 强激光与粒子束, 2012, 24(12): 2873-2876.
    [32]
    蒋廷勇, 王晓嘉, 周恒, 等. 电阻阵列加载单锥TEM室研究[J]. 计量学报, 2022(11): 1-5.
    [33]
    国家市场监督管理总局. 电场探头的校准规范: JJF 1886-2020[S]. 北京: 中国质检出版社, 2020.
    [34]
    李高升, 刘继斌, 何建国. 微波暗室设计原理的研究与应用[C]. 中国电子学会, 2004.
    [35]
    周香. 混响室法天线参数测试研究[D] . 南京: 东南大学, 2016.
    [36]
    沈涛, 姚利军. 混响室设计技术研究[C]. 中国宇航学会, 2004.
    [37]
    王淞宇, 齐万泉. 基于混响室的电场探头校准方法研究[J]. 宇航计测技术, 2018, 38(1): 23-26. doi: 10.12060/j.issn.1000-7202.2018.01.05
    [38]
    Fall A K, Besnier P, Lemoine C, et al. Design and experimental validation of a mode-stirred reverberation chamber at millimeterwaves[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(1): 12-21. doi: 10.1109/TEMC.2014.2356712
    [39]
    P. Hallbjorner, Shi C . Reverberation chamber for accurate antenna measurements within 2–30 GHz[C]. IEEE, 2007.
    [40]
    赵敏, 董德晖, 李胜海. 基于混响室的电场探头快速校准系统[J]. 电子产品可靠性与环境试验, 2020, 38(S1): 66-69.
    [41]
    张东飞, 耿存杰, 刘晓平, 等. 基于标准表定点量传的大口径电磁流量计在线校准方法研究[J]. 计量技术, 2018(10): 50-52.
    [42]
    Wang Z, Ren Y, Zhang Y, et al. A Novel Mode-Stirred Reverberation Chamber Design for 5G Millimeter Wave Bands[J]. IEEE Access, 2021, PP(99): 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (565) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return