Volume 67 Issue 5
May  2023
Turn off MathJax
Article Contents
MA Yunyun, CHAI Wenxuan, LI Hongli, ZOU Yingjie, XIE Qian, XIAO Yang, XU Weihong. A Study on the Methodology for Evaluating the Quality Control Status of VOCs Monitoring Systems through Statistical Analysis[J]. Metrology Science and Technology, 2023, 67(5): 64-71. doi: 10.12338/j.issn.2096-9015.2023.0063
Citation: MA Yunyun, CHAI Wenxuan, LI Hongli, ZOU Yingjie, XIE Qian, XIAO Yang, XU Weihong. A Study on the Methodology for Evaluating the Quality Control Status of VOCs Monitoring Systems through Statistical Analysis[J]. Metrology Science and Technology, 2023, 67(5): 64-71. doi: 10.12338/j.issn.2096-9015.2023.0063

A Study on the Methodology for Evaluating the Quality Control Status of VOCs Monitoring Systems through Statistical Analysis

doi: 10.12338/j.issn.2096-9015.2023.0063
  • Received Date: 2023-03-08
  • Accepted Date: 2023-05-10
  • Rev Recd Date: 2023-05-19
  • Available Online: 2023-08-01
  • Publish Date: 2023-05-31
  • Monitoring photochemical precursors in the atmosphere can provide essential data for researching the formation mechanisms of composite pollution from ozone (O3) and fine particulate matter (PM2.5). The quality of the monitoring data significantly influences the accuracy of air pollution control measures. Therefore, executing scientific monitoring is critical for preventive measures and has paramount importance in continually improving China's air quality. Volatile Organic Compounds (VOCs), key precursors to O3 and PM2.5 pollution, participate in photochemical reactions in the atmosphere. This paper introduces the structure and function of VOCs' online monitoring systems in the photochemical monitoring network. After a preliminary analysis of quality control indicators and error sources, potential typical array distribution forms of quality control results were discussed. The paper further explores methods for evaluating the quality control status of the monitoring system through statistical analysis and conducts correlation analyses between residuals and quality control results, as well as between operational duration and component qualification rates. The paper recommends collecting a large sample of quality control data, carrying out systematic and meticulous correlation analyses among quality control indicators, and investigating factors that affect the quality control status of the monitoring system and the quality of measured data.
  • loading
  • [1]
    柴发合. 我国大气污染治理历程回顾与展望[J]. 环境与可持续发展, 2020, 45(3): 5-15.
    [2]
    GUO H, WANG Y, ZHANG H. Characterization of Criteria Air Pollutants in Beijing During 2014-2015[J]. Environmental Research, 2017, 154(4): 334-344.
    [3]
    闫慧, 张维, 侯墨, 等. 我国地级及以上城市O3污染来源及控制区划分[J]. 环境科学, 2020, 41(12): 5 215-5 224.
    [4]
    吴季友, 陈传忠, 蒋睿晓, 等. 我国生态环境监测网络建设成效与展望[J]. 中国环境监测, 2021, 37(2): 1-7.
    [5]
    BARI M A, KINDZIERSKI W B. Ambient Volatile Organic Compounds(VOCs)in Calgary, Alberta: Sources and Screening Health Risk Assessment[J]. Science of the Total Environment, 2018, 631/632: 627-640. doi: 10.1016/j.scitotenv.2018.03.023
    [6]
    STYLER S A, TROPOSPHERIC L I F. Apportioning Aldehydes: Quantifying Industrial Sources of Carbonyls [J]. Journal of Enviromental Sciences, 2015(4): 132-134.
    [7]
    张文阁, 刘巍, 刘俊杰, 等. 环境空气颗粒物质量浓度计量溯源体系的建立[J]. 计量科学与技术, 2022, 66(10): 10-15.
    [8]
    李跃武, 柴文轩, 赵月, 等. 我国重点区域环境大气VOCs监测体系现状及发展方向[J]. 环境科学研究, 2023, 36(5): 857-865. doi: 10.13198/j.issn.1001-6929.2023.02.19
    [9]
    MA P K, ZHAO Y L, ROBINSON A L, et al. Evaluating the impact of new observational constraints on P-S/IVOCemissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9237-9259. doi: 10.5194/acp-17-9237-2017
    [10]
    姜华, 常宏咪. 我国臭氧污染形势分析及成因初探[J]. 环境科学研究, 2021, 34(7): 1576-1582.
    [11]
    United States Environment Protection Agency. Community Scale Air Toxics Ambient Monitoring [EB/OL]. [2022].https://www.epa.gov/amtic/community-scale-air-toxics-ambient-monitoring-csatam-final-reports.
    [12]
    国家质量监督检验检疫总局. 计量标准考核规范: JJF 1033-2016[S]. 北京: 中国质检出版社, 2016.
    [13]
    环境保护部. 环境监测质量管理技术导则: HJ 630-2011[S]. 北京: 中国环境出版集团, 2011.
    [14]
    生态环境部. 环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法: HJ1010-2018[S]. 北京: 中国环境出版集团, 2018.
    [15]
    国家市场监督管理总局. 气相色谱-质谱联用仪校准规范: JJF1164-2018[S]. 北京: 中国质检出版社, 2018.
    [16]
    国家市场监督管理总局, 国家标准化管理委员会. 实验室气相色谱仪: GB/T 30431-2020[S]. 北京: 中国质检出版社, 2020.
    [17]
    国家认证认可监督管理委员会. 能力验证结果的统计处理和能力评价指南: CNAS-GL002: 2018[S]. 北京: 中国标准出版社, 2018.
    [18]
    国家认证认可监督管理委员会. 实验室测量审核结果评价指南: RB/T 171-2018[S]. 北京: 中国标准出版社, 2018.
    [19]
    岳亚军, 王泽璋, 叶菁, 等. 空气质量检测远程在线智能校准系统研究[J]. 计量科学与技术, 2022, 66(12): 27-35.
    [20]
    宋飞. 不同统计方法在磁粉检测能力验证结果分析中的应用[J]. 无损检测, 2022, 44(11): 32-35.
    [21]
    王彬, 任露, 王晓帆, 等. 基于协方差分析的合作协同进化差分进化算法[J]. 通信学报, 2023, 44(1): 189-199.
    [22]
    李荣华, 姜英, 吕炜, 等. 变量间的相关系数及其SPSS中计算[J]. 教育现代化, 2020, 7(21): 120-125.
    [23]
    郭瑞民. 气体光谱计量技术研究进展[J]. 计量科学与技术, 2022, 66(10): 52-56.
    [24]
    王德发, 李琪, 叶菁, 等. 气体测量中的线性拟合[J]. 计量科学与技术, 2022, 66(10): 3-9. doi: 10.12338/j.issn.2096-9015.2022.0100
    [25]
    毕哲, 宋小平, 巢静波, 等. 国际计量委员会环境与气候变化战略分析[J]. 计量科学与技术, 2023, 67(2): 3-12. doi: 10.12338/j.issn.2096-9015.2022.0253
    [26]
    王修远. 大气污染问题的环境检测及对策分析[J]. 清洗世界, 2023, 39(3): 134-136. doi: 10.3969/j.issn.1671-8909.2023.03.045
    [27]
    张文帅, 朱海渤, 杜天君. 固定污染源废气挥发性有机物排放连续监测系统校准方法研究[J]. 计量科学与技术, 2021, 65(9): 56-60, 30.
    [28]
    刘宇锋. 大数据分析在生态环境领域的应用[J]. 数字技术与应用, 2023, 41(3): 71-73. doi: 10.19695/j.cnki.cn12-1369.2023.03.21
    [29]
    吴丹, 高晓晶, 廖小卿, 等. 大气重金属在线监测系统的评价[J]. 计量科学与技术, 2021, 65(3): 32-35.
    [30]
    林家秋. “双碳”背景下VOCs和CO2协同减排路径研究[J]. 海峡科学, 2023(3): 64-66.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (305) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return