Volume 67 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
FAN Yuguang, WANG Yin, GAO Lin, JI Xue. Effects of Solar Radiation on the Flow Field Correction Coefficient of the Ultrasonic Flowmeter for Natural Gas[J]. Metrology Science and Technology, 2023, 67(3): 56-64, 34. doi: 10.12338/j.issn.2096-9015.2023.0067
Citation: FAN Yuguang, WANG Yin, GAO Lin, JI Xue. Effects of Solar Radiation on the Flow Field Correction Coefficient of the Ultrasonic Flowmeter for Natural Gas[J]. Metrology Science and Technology, 2023, 67(3): 56-64, 34. doi: 10.12338/j.issn.2096-9015.2023.0067

Effects of Solar Radiation on the Flow Field Correction Coefficient of the Ultrasonic Flowmeter for Natural Gas

doi: 10.12338/j.issn.2096-9015.2023.0067
  • Received Date: 2023-03-13
  • Accepted Date: 2023-04-23
  • Rev Recd Date: 2023-04-27
  • Available Online: 2023-05-16
  • Publish Date: 2023-03-18
  • In 2021, China’s consumption of natural gas exceeded 300 billion cubic meters. Even slight measurement discrepancies in such volumes can result in significant economic impacts, and yet, the reliability of currently utilized natural gas flowmeters in the market leaves much to be desired. The ultrasonic flowmeter for natural gas, a non-contact flow measurement device, is widely used but its measurement accuracy is affected by numerous factors. Using the ANSYS simulation platform and considering the geographical location and seasonal characteristics of Xi'an, a numerical model of a DN300 pipeline's four-path ultrasonic flowmeter was established to study the coupling effects of solar radiation factors within the natural gas transmission environment. The time-difference method of the ultrasonic flowmeter for natural gas measures pipeline fluid flow by utilizing the difference in ultrasonic wave transit time. The flow correction coefficient, a key parameter in the metering of the ultrasonic flowmeter, is defined as the ratio of the path-line average speed to the cross-sectional average speed of the pipeline. Simulation results reveal that with changes in solar radiation energy, the relative error of the flow field correction coefficient experiences only slight changes. When the solar radiation coupled air velocity is considered, the relative error range of the flow field correction coefficient with solar radiation in winter is between 0.005% and 0.091%, and in summer it's between 0.048% and 0.27%. The magnitude of change in summer is noticeably greater than in winter. To improve the measurement accuracy of the ultrasonic flowmeter, a secondary correction of the ultrasonic flowmeter device can be carried out at noon during the hotter summer days.
  • loading
  • [1]
    苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
    [2]
    Mousavi S F, Hashemabadi S H, Jamali J. Calculation of geometric flow profile correction factor for ultrasonic flow meter using semi-3D simulation technique[J]. Ultrasonics, 2020(106): 106165.
    [3]
    裴全斌, 青青, 陈正文, 等. 天然气流量计算机计量测试评价方法探讨[J]. 计量科学与技术, 2021, 65(12): 35-39.
    [4]
    Lynnworth L C , Liu Y . Ultasonic flowmeters: Half-century progress report 1955-2005[J]. Ultrasonics, 2007, 44 Suppl 1(C3): e1371-8.
    [5]
    游赟, 李琳, 段枷亦. 节流降温对天然气大流量计量检定准确性的影响与对策[J]. 天然气工业, 2019, 39(2): 111-116.
    [6]
    国家质量监督检验检疫总局. 用气体超声流量计测量天然气流量: GB/T18604-2014[S]. 北京: 中国标准出版社, 2014.
    [7]
    黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6,12.
    [8]
    王雪峰, 唐祯安. 超声波气体流量计的管道模型仿真和误差分析[J]. 仪器仪表学报, 2009, 30(12): 2612-2618.
    [9]
    孙彦招, 张涛, 郑丹丹, 等. 气体超声流量计换能器附近回流影响声束研究[J]. 仪器仪表学报, 2018, 39(4): 53-60.
    [10]
    汤卓远. 多声道气体超声波流量计流场补偿关键技术研究[D]. 杭州: 浙江大学, 2016.
    [11]
    朱红钧. FLUENT 12流体分析及工程仿真[M]. 北京: 清华大学出版社, 2011.
    [12]
    王辉, 刘丁发, 张强. 计量核查技术在气体超声计量系统性能评价中的应用[J]. 计量科学与技术, 2021, 65(4): 68-73,77.
    [13]
    杨敬杰. 超声波流量计实务[M]. 北京: 中国石油大学出版社, 2014.
    [14]
    刘敦利, 蔡勤, 胡鹤鸣. 超声测流装置的实验室测试与优化[J]. 计量学报, 2021, 42(10): 1282-1287.
    [15]
    吴波, 李晶晶, 李晓鹏, 等. 阀门扰流条件下外夹式与插入式多声道超声流量计性能对比[J]. 计量科学与技术, 2020(8): 34-39,33.
    [16]
    唐晓宇. 多声道超声波气体流量检测技术仿真与实验研究[D]. 杭州: 浙江大学, 2016.
    [17]
    祝飘霞. DN80四声道气体超声波流量计设计与适应性研究[D]. 江西: 东华理工大学, 2020.
    [18]
    刘发展, 赵霖, 刘源, 等. 基于超声传播时间法的水轮机流量测量不确定度[J]. 计量科学与技术, 2022, 66(2): 33-37,54.
    [19]
    龙腾, 章贵和, 金刚, 等. 基于辐射-对流-传导热流固耦合模型的乏燃料贮运容器传热特性与优化研究[J]. 核动力工程, 2021, 42(5): 7. doi: 10.13832/j.jnpe.2021.05.0057
    [20]
    刘红波, 陈志华, 周婷. 太阳辐射作用下钢管温度场分析[J]. 空间结构, 2011, 17(2): 7.
    [21]
    高峰, 李虹杰, 刘文艺. 湿度对皂膜流量计计量特性的影响研究[J]. 计量科学与技术, 2021, 65(8): 62-65.
    [22]
    朱彤, 严磊, 吴家正, 等. 燃气管道温度场的分析与计算[J]. 煤气与热力, 2004(1): 5-8.
    [23]
    董勇, 涂多运, 肖芳, 等. 太阳辐射影响下工艺管道及设备设计温度探讨[J]. 油气田地面工程, 2019, 38(2): 34-40.
    [24]
    林错错, 王元清, 石永久. 露天日照条件下钢结构构件的温度场分析[J]. 钢构, 2010, 25(8): 38-43,31.
    [25]
    杨汗青, 潘亚东, 吴惠芳. 天然气工程中低温钢的选用[J]. 天然气与石油, 2008(5): 22-25,72.
    [26]
    王元清, 林错错, 石永久. 露天日照条件下钢结构构件温度的试验研究[J]. 建筑结构学报, 2010, 31(S1): 140-147.
    [27]
    王博, 徐鑫, 陈一鸣. 基于ANSYS Workbench的天然气渐扩管冲蚀磨损仿真模拟[J]. 润滑与密封, 2019, 44(12): 86-95.
    [28]
    张兆顺, 崔桂香, 许春晓, 等. 湍流理论与模拟 [M]. 第二版. 北京: 清华大学出版社, 2017.
    [29]
    郑贤臣. 几种辐射模型在FLUENT中的应用[J]. 现代科技, 2009, 63(11): 1671-1689.
    [30]
    严寒, 张鸿雁. 不同辐射模型在太阳辐射数值模拟中的比较[J]. 节能技术, 2015, 33(5): 42. doi: 10.3969/j.issn.1002-6339.2015.05.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (315) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return