Volume 67 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
DENG Yuqiang, GUO Shuheng, SUN Qing, LI Chaochen. Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry[J]. Metrology Science and Technology, 2023, 67(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0084
Citation: DENG Yuqiang, GUO Shuheng, SUN Qing, LI Chaochen. Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry[J]. Metrology Science and Technology, 2023, 67(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0084

Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry

doi: 10.12338/j.issn.2096-9015.2023.0084
  • Received Date: 2023-03-22
  • Accepted Date: 2023-04-10
  • Rev Recd Date: 2023-05-19
  • Available Online: 2023-07-03
  • Publish Date: 2023-04-18
  • Frequency is one of the key parameters of terahertz radiation, and accurate and traceable measurement of terahertz frequency is crucial for research and applications of terahertz technology. In order to achieve accurate measurement and traceability of terahertz laser wavelength, we have developed a terahertz interferometer to measure the wavelength and frequency of terahertz radiation sources. We constructed Fabry-Perot and Michelson interferometers to measure the wavelength and frequency of terahertz radiation sources, including backward wave oscillator terahertz sources and terahertz frequency multipliers. We propose using high-resistivity silicon plates as terahertz beam splitters, which not only have a simple structure, but also enable wide-band wavelength and frequency measurements. Using a single silicon plate as the beam splitter, we achieved ideal measurement results across a wide frequency range from 90 GHz to 800 GHz. By performing Fourier transforms on the measured terahertz interference patterns, we obtained terahertz frequency information. We calibrated the two terahertz interferometers at frequencies of 100 GHz and 300 GHz using terahertz frequency combs, enabling accurate measurement and correction of the radiation wavelength from the terahertz sources. This allowed traceability of the interferometer measurement results to the International System of Units (SI). We also performed uncertainty analysis on the measurements. Terahertz interferometry provides a simple and convenient approach to measuring terahertz wavelengths, and will find wide applications in terahertz metrology.
  • loading
  • [1]
    Masayoshi Tonouchi. Cutting-edge terahertz technology[J]. Nat. Photonics, 2007, 1(2): 97-105.
    [2]
    Carlo Sirtori. Applied physics: Bridge for the terahertz gap[J]. Nature, 2002, 417(6885): 132-133.
    [3]
    Bradley Ferguson, Xi-Cheng Zhang. Materials for terahertz science and technology[J]. Nat. Mater. , 2002, 1(1): 26-33.
    [4]
    E Pickwell, V P Wallace. Biomedical applications of terahertz technology[J]. J. Phys. D: Appl. Phys, 2006, 39(17): R301-R309.
    [5]
    Andreas Steiger, Ralf Müller, Alberto Remesal Oliva, et al. Terahertz Laser Power Measurement Comparison[J]. IEEE T. THz. Sci. Techn. , 2016, 6(5): 664-669.
    [6]
    John H. Lehman, Bob Lee, Erich N. Grossman. Far infrared thermal detectors for laser radiometry using a carbon nanotube array[J]. Appl. Opt. , 2011, 50(21): 4099-4104.
    [7]
    Yuqiang Deng, Qing Sun, Jing Yu, et al. Broadband high-absorbance coating for terahertz radiometry[J]. Optics Express, 2013, 21(5): 5737-5742.
    [8]
    Yuqiang Deng, Jing Li, Qing Sun. Traceable Measurement of CW and Pulse Terahertz Power with Terahertz Radiometer[J]. IEEE J. Sel. Top. Quan. Electr. , 2007, 23(4): 3800306.
    [9]
    Andreas Steiger, Ralf Müller, Alberto Remesal Oliva, et al. . Terahertz Laser Power Measurement Comparison[J]. IEEE T. THz Sci. Techn. , 2016, 6(5): 664-669.
    [10]
    邓玉强, 孙青, 于靖, 等. 太赫兹辐射功率计量研究进展与国际比对[J]. 中国激光, 2017, 44(3): 0314001.
    [11]
    Yuqiang Deng, Qing Sun, Jing Yu. On-line calibration for linear time-base error correction of terahertz spectrometers with echo pulses[J]. Metrologia, 2014, 51(1): 18-24.
    [12]
    M. Naftaly, R. A. Dudley, J. R. Fletcher, et al. Frequency calibration of terahertz time-domain spectrometers[J]. J. Opt. Soc. Am. B. , 2009, 26(7): 1357-1392.
    [13]
    Yuqiang Deng, Heiko Füser, and Mark Bieler. Absolute intensity measurements of CW GHz and THz radiation using electro-optic sampling[J]. IEEE T. Instrum. Meas. , 2015, 64(6): 1734-1740.
    [14]
    孟莹, 邓玉强, 郭树恒, 等. 基于频率梳的太赫兹辐射功率密度测量[J]. 红外与毫米波学报, 2019, 38(2): 254-261.
    [15]
    Takeshi Yasui, Shuko Yokoyama, Hajime Inaba, et al. Terahertz Frequency Metrology Based on Frequency Comb[J]. IEEE J. Sel. Top. Quant, 2011, 17(1): 191-201.
    [16]
    Heiko Füser, Rolf Judaschke, Mark Bieler. High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser[J]. Appl. Phys. Lett., 2011, 99(12): 121111.
    [17]
    Heiko Füser, Mark Bieler. Terahertz Frequency Combs[J]. J. Infrared Milli. Terahz. Waves, 2014, 35(8): 585-609.
    [18]
    孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测量方法研究[J]. 光学学报, 2016, 36(4): 0412002.
    [19]
    孙青, 杨奕, 邓玉强, 等. 利用非锁定飞秒激光实现太赫兹频率的精密测量[J]. 物理学报, 2016, 65(15): 150601.
    [20]
    Oliver Kliebisch, Dirk C. Heinecke, Stefano Barbieri, et al. Unambiguous real-time terahertz frequency metrology using dual 10 GHz femtosecond frequency combs[J]. Optica, 2018, 5(11): 1431-1437.
    [21]
    Yi-Da Hsieh, Hiroto Kimura, Kenta Hayashi, et al. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs[J]. J. Infrared Milli. Terahz. Waves, 2016, 37(9): 903-915.
    [22]
    邬佳璐, 方波, 李剑敏, 等. 基于迈克尔逊干涉法的太赫兹波长精密测量[J]. 计量学报, 2022, 43(9): 1147-1153.
    [23]
    曹铁岭, 姚建铨. 基于法布里-珀罗干涉仪的太赫兹波长测试仪[J]. 现代科学仪器, 2008(2): 36-39.
    [24]
    董凯, 赖伟恩, 孙丹丹, 等. 基于金属孔阵列的聚酰亚胺薄膜太赫兹探测[J]. 强激光与离子束, 2013, 25(6): 1479-1482.
    [25]
    Li Chenlong, Feng Lishuang, Zhou Zhen, et al. Optical-control terahertz modulator based on subwavelength metallic hole arrays[J]. Infrared and Laser Engineering, 2014, 43(12): 4013-4016.
    [26]
    R. Ulrich, K. F. Renk, L. Genzel. Tunable submillimeter interferometers of the Fabry-Perot type[J]. IEEE T Microw. Theory, 1963, 11(5): 363-371.
    [27]
    Li-Jin Chen, Tzeng-Fu Kao, Ja-Yu Lu, et al. A simple terahertz spectrometer based on a lower flectivity Fabry-Perot interferometer using Fourier transform spectroscopy[J]. Opt. Express, 2006, 14(9): 3840-3846.
    [28]
    Heribert Eisele, Mira Naftaly, John R Fletcher , et al. A simple interferometer for the characterization of sources at terahertz frequencies[J]. Meas. Sci. Technol, 2007, 18(8): 2623.
    [29]
    F Turkoglu, H Koseoglu, Y Demirhan, et al. Interferometer measurements of terahertz waves from Bi2Sr2CaCu2O8+d mesas[J]. Supercond. Sci. Technol, 2012, 25: 125004.
    [30]
    邓玉强, 邢岐荣, 郎利影, 等. THz波的小波变换频谱分析[J]. 物理学报, 2005, 54(11): 5224-5227.
    [31]
    国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国标准出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (241) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return