Volume 67 Issue 5
May  2023
Turn off MathJax
Article Contents
HUANG Ting, WU Huaxin. A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus[J]. Metrology Science and Technology, 2023, 67(5): 9-15. doi: 10.12338/j.issn.2096-9015.2023.0095
Citation: HUANG Ting, WU Huaxin. A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus[J]. Metrology Science and Technology, 2023, 67(5): 9-15. doi: 10.12338/j.issn.2096-9015.2023.0095

A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus

doi: 10.12338/j.issn.2096-9015.2023.0095
  • Received Date: 2023-03-30
  • Accepted Date: 2023-04-23
  • Rev Recd Date: 2023-05-19
  • Available Online: 2023-07-06
  • Publish Date: 2023-05-31
  • Quantitative Nuclear Magnetic Resonance (qNMR) stands as a selective, accurate, and prompt method for quantitative analysis, predominantly employed in purity assessments of organic compounds. Its potential as a primary method has generated burgeoning interest and applications in international metrological comparisons. The recent international metrological development strategy plans to extend its conventional scope from hydrogen spectroscopy (1H) to fluorine and phosphorus spectroscopy. The incorporation of qNMR in new domains such as metabolomics, environmental analysis, and physiological research has introduced more intricate molecules and systems, like natural products, biomolecules, proteins, and metabolites, thereby challenging the standard 1H-qNMR. This has led to an increased focus on qNMR methodologies based on other NMR-active nuclei such as fluorine (19F) and phosphorus (31P). These methodologies offer comparable sensitivity, enhanced resolution, and the ability to eliminate interference from residual solvents or water peaks relative to 1H-qNMR. This review presents the distinctive advantages, methodological enhancements, and the latest research developments in 19F-qNMR and 31P-qNMR. Particular emphasis is placed on the development of traceable reference materials, coaxial internal standard insertion methods, and parameter optimization. The application domains of 19F-qNMR encompass medicine, materials, and environmental sciences, whereas 31P-qNMR is centered around food, medicine, and biological sectors.ound food, medicine, and biological sectors.
  • loading
  • [1]
    Working Group on Organic Analysis: Strategy 2021-2030. Consultative Committee for Amount of Substance-Metrology in Chemistry and Biology[EB/OL]. [2023-03-27].https://www.bipm.org/documents/20126/2071059/CCQM-OAWG+Strategy+document+2021-2030.pdf.
    [2]
    RIGGER R, RUCK A, HELLRIEGEL C, et al. Certified reference material for use in 1H, 31P, and 19F quantitative NMR, ensuring traceability to the international system of units[J]. Journal of AoacInterna TionalVol, 2017, 100: 1365-1375.
    [3]
    DO N M, OLIVIER M A, SALISBURY JJ, et al. Application of quantitative 19F and 1H NMR for reaction monitoring and in situ yield determinations for an early stage pharmaceutical candidate[J]. Anal Chem, 2011, 83: 8766-8771. doi: 10.1021/ac202287y
    [4]
    HENDERSON T J. Quantitative NMR spectroscopy using coaxial inserts containing a reference standard: purity determinations for military nerve agents[J]. Anal Chem, 2002, 74: 191-198. doi: 10.1021/ac010809+
    [5]
    MANIARA G, RAJAMOORTHI K, RAJAN S, et al. Method performance and validation for quantitative analysis by 1H and 31P NM spectroscopy. Applications to analytical standards and agricultural Chemicals[J]. Anal Chem, 1998, 70: 4921-4928. doi: 10.1021/ac980573i
    [6]
    DEEN T S A, HIBBERT D B, HOOK J M, et al. Quantitative nuclear magnetic resonance spectrometryII. Purity of phosphorus-based agrochemicals glyphosate(N-(phosphonomethyl)-glycine) and profenofos(O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate)measured by 1H and 31P QNMR spectrometry[J]. Analytica Chimica Acta, 2002, 474: 125-135. doi: 10.1016/S0003-2670(02)01017-6
    [7]
    AKINJOLE A, ALNAFISAH A S, COULIBALY F S, et al. Fluorine (19F) nuclear magnetic resonance spectroscopy for realtime maraviroc analysis from microparticulate systems[J]. Journal of Pharmaceutical Sciences, 2021, 00: 1-9.
    [8]
    韩智, 龚蕾, 王会霞, 等. 定量核磁共振磷谱在食品分析检测中的研究进展[J]. 食品与机械, 2021, 37(3): 207-212.
    [9]
    NISHIZAKI Y, LANKIN D C, CHEN S, et al. Accurate and precise external calibration enhances the versatility of quantitative NMR (qNMR)[J]. Anal Chem, 2011, 93, 2733-2741.
    [10]
    郎洁, 董燕, 王嫱智, 等. 核磁共振波谱内标法测定四氯虫酰胺标样的含量 [J]. 农药, 2020, 59(7): 499-501.
    [11]
    CASTAING-CORDIER T, LADROUE V, BESACIER F, et al. High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances[J]. Forensic Science International, 2021, 321: 110718. doi: 10.1016/j.forsciint.2021.110718
    [12]
    GERIG J T. Fluorine NMR [EB/OL]. [2023-03-29].https://www.biophysics.org/Portals/0/BPSAssets/Articles/gerig.pdf.
    [13]
    DALVIT C, KO S Y, VULPETTI A. Application of the rule of shielding in the design of novel fluorinated structuralmotifs and peptidomimetics[J]. Journal of Fluorine Chemistry, 2013, 152: 129-135. doi: 10.1016/j.jfluchem.2013.01.017
    [14]
    ARNTSON K E, POMERANTZ W C K. Protein-observed fluorine NMR: a biorthogonal approach for small molecule discovery[J]. Med Chem, 2016, 59: 5158-5171. doi: 10.1021/acs.jmedchem.5b01447
    [15]
    MISHRA N K, URICK A K, EMBER S W J, et al. Fluorinated aromatic amino acids are sensitive 19F NMR probes for bromodomain-ligand interactions[J]. ACS Chem, Biol, 2014, 9: 2755-2760. doi: 10.1021/cb5007344
    [16]
    MATTES A O, RUSSELL D, TISHCHENKO E, et al. Application of 19F quantitative NMR to pharmaceutical analysis[J]. Concepts MagnReson Part A, 2016, 45: 21422.
    [17]
    YU J, HALLAC RR, CHIGURU S. New frontiers and developing applications in 19F NMR[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 70: 25-49. doi: 10.1016/j.pnmrs.2012.10.001
    [18]
    LIU Y, LIU Z, YANG H, et al. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content[J]. Journal of Analytical Methods in Chemistry, 2016, 5: 5-10.
    [19]
    VLASIOU M, DROUZAC. 19F NMR for the speciation and quantification of theOH-molecules in complex matrices[J]. Anal Methods, 2015, 7: 3680-3684. doi: 10.1039/C5AY00178A
    [20]
    LIU C, SONG C, JIA W, et al. The application of 19F NMR spectroscopy for the analysis of fluorinated new psychoactive substances (NPS)[J]. Forensic Science International, 2022, 340: 111450. doi: 10.1016/j.forsciint.2022.111450
    [21]
    AYOTTE Y, WOO S, LAPLANTE S R. Practical considerations and guidelines for spectral referencing for fluorine NMR ligand screening[J]. ACS Omega, 2022, 7: 13155-13163. doi: 10.1021/acsomega.2c00613
    [22]
    KADDOURI A E, PERRIN L, JEAN B, et al. Investigation of perfluorosulfonic acid ionomer solutions by 19F NMR and DLS: establishment of an accurate quantification protocol[J]. Polymer Physics, 2016, 54: 2210-2222. doi: 10.1002/polb.24130
    [23]
    MOGHIMI A, OMRANI I, KHANMIRI R H, et al. Determination of NCO content of the urethane prepolymers by 19F NMR spectroscopy[J]. Polymer Testing, 2014, 33: 30-33. doi: 10.1016/j.polymertesting.2013.11.002
    [24]
    YAMAZAKI T, SAITO T, IHARA T. A new approach for accurate quantitative determination using fluorine nuclear magnetic resonance spectroscopy[J]. J Chem Metrol, 2017, 11: 16-22. doi: 10.25135/jcm.3.17.03.036
    [25]
    NASR JJ, SHALAN S. Validated 1H and 19F nuclear magnetic resonance for the quantitative determination of the hepatitis C antiviral drugs sofosbuvir, ledipasvir, and daclatasvir in tablet dosage forms[J]. Microchemical Journal, 2020, 152: 104437. doi: 10.1016/j.microc.2019.104437
    [26]
    WANG D, PARK J H, ZHENG J, et al. Multiphase drug distribution and exchange in oil-in-Water nano emulsion revealed by high-resolution 19F qNMR[J]. Mol Pharmaceutics, 2022, 19: 2142-2150. doi: 10.1021/acs.molpharmaceut.2c00025
    [27]
    邓冬艳, 宋红杰, 齐悦. 核磁共振氟谱法测定氟他胺含量的实验设计 [J]. 实验室研究与探索, 2019, 38(6): 30-37.
    [28]
    杨百勤, 孔二丽, 薛潇迪, 等. 采用核磁共振氟谱定性与定量分析盐酸氟西汀 [J]. 药学学报, 2012, 47(5): 630-633.
    [29]
    史艺文, 李钦, 林崇熙. 核磁共振氟谱对五氟利多的定量分析 [J]. 河南大学学报(医学版), 2015, 34(4): 252-255.
    [30]
    MA S, CHEN Q, JOGENSEN F H, et al. 19F NMR studies of Nafion™ ionomer adsorption on PEMFC catalysts and supporting carbons[J]. Solid State Ionics, 2007, 178: 1568-1575. doi: 10.1016/j.ssi.2007.10.007
    [31]
    叶怀英, 孟庆文, 余国军, 等. 核磁共振技术在含氟聚合物定量分析中的应用 [J]. 分析与检测, 2022, 28(5): 29-33.
    [32]
    BHAT A P, POMERANTZ W C K, ARNOLD W A. Finding fluorine: photoproduct formation during the photolysis of fluorinated pesticides[J]. Environ Sci Technol, 2022, 56: 12336-12346. doi: 10.1021/acs.est.2c04242
    [33]
    ELLIS D A, MARTIN J W, MUIR D C G, et al. Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples[J]. Anal Chem, 2000, 72: 726-731. doi: 10.1021/ac9910280
    [34]
    AKHDAR A, ANDANSON J, FAURE S, et al. Application of quantitative 1H and 19F NMR to organometallics[J]. Journal of Organometallic Chemistry, 2021, 950: 121991. doi: 10.1016/j.jorganchem.2021.121991
    [35]
    AGRAHARI V, MENG J, PUROHIT SS, et al. Real-time analysis of tenofovir release kinetics using quantitative phosphorus (31P) nuclear magnetic resonance spectroscopy[J]. Journal of Pharmaceutical Sciences, 2017, 106: 3005-3015. doi: 10.1016/j.xphs.2017.03.043
    [36]
    JIANG H, CHEN H, CAI N, et al. Quantitative 31P-NMR spectroscopy for the determination of fosfomycin and impurity A in pharmaceutical products of fosfomycin sodiumor calcium[J]. MagnReson Chem, 2015, 53: 454-459.
    [37]
    黄挺, 王静羽, 万康妮. 去除杂质干扰的定量核磁共振法进展综述 [J]. 计量科学与技术, 2022, 66(6): 26-30.
    [38]
    MICHAEL M A, BERKOWITZ H D, GROSS G M, et al. 31P nuclear magnetic resonance spectroscopy: Noninvasive biochemical analysis of the ischemic extremity[J]. J Vasc Surg, 1986, 3: 411-420.
    [39]
    GARD D R, BURQUIN J C, GARD J K, et al. Quantitative Analysis of Short-Chain Phosphates by Phosphorus-31 Nuclear Magnetic Resonance and Interlaboratory Comparison with Infrared and Chromatographic Methods[J]. Anal Chem, 1992, 64: 557-561. doi: 10.1021/ac00029a020
    [40]
    MARTINO R, GILARD V, DESMOULIN D, et al. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs[J]. J Pharmaceut Biomed, 2005, 38: 871-891. doi: 10.1016/j.jpba.2005.01.047
    [41]
    黄挺, 张伟, 全灿, 等. 定量核磁共振新方法在纯度定值的应用 [J]. 计量技术, 2018(9): 8-9.
    [42]
    MATSUMI R, HELLRIEGEL C, SCHOENENBERGER B, et al. Biocatalytic asymmetric phosphorylation of mevalonate[J]. RSC Adv, 2014, 4: 12989-12994. doi: 10.1039/c4ra01299b
    [43]
    DEREWINSKI M, SARV P, SUN X, et al. Reversibility of the Modification of HZSM-5 with Phosphate Anions[J]. J Phys Chem C, 2014, 118: 6122-6131. doi: 10.1021/jp4053677
    [44]
    ATANASSOVA M, KURTEVA V. Peculiar synergistic extraction behavior of Eu(III) in ionic liquids: benzoyl acetone and CMPO fusion[J]. Sep Purif Technol, 2017, 183: 226-236. doi: 10.1016/j.seppur.2017.03.033
    [45]
    梁春杰, 孟庆春, 徐晓婷, 等. 基于1 H - NMR、31 P - NMR的三苯基膦三间磺酸钠定量分析研究 [J]. 分析测试学报, 2020, 39(8): 1018-1022.
    [46]
    BELMONTE-SÁNCHEZ J R, AGUILERA-SÁEZ L M, ROMERO-GONZÁLEZ R, et al. Determination of etidronic acid in vegetable-washing water by a simple and validated quantitative 31P nuclear magnetic resonance method[J]. Microchem J, 2019, 150: 104083 doi: 10.1016/j.microc.2019.104083
    [47]
    KATO T, NISHIMIYA M, KAWATA A, et al. Quantitative 31P NMR Method for Individual and Concomitant Determination of Phospholipid Classes in Polar Lipid Samples[J]. J Oleo Sci, 2018, 67(1): 1279-1289.
    [48]
    LOENING N M, CHAMBERLIN A M, ZEPEDA A G, et al. Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy[J]. NMR Biomed, 2005, 18: 413-420. doi: 10.1002/nbm.973
    [49]
    韩 智, 江丰, 周 密, 等. 核磁共振磷谱定量测定肉制品中磷酸盐的含量 [J]. 食品工业科技, 2021, 42(9): 275-280.
    [50]
    UCHIYAMA N, KIYOTA K, HOSOE J, et al. Quantitative 31P-NMR for Purity Determination of Sofosbuvir and Method Validation[J]. Chem Pharm Bull, 2022, 70(12): 892-900. doi: 10.1248/cpb.c22-00639
    [51]
    BETTJEMANB I, HOFMAN K A, BURGESS E J, et al. Seafood Phospholipids: Extraction Efficiency and Phosphorous Nuclear Magnetic Resonance Spectroscopy (31P NMR) Profiles[J]. J Am Oil Chem Soc, 2018, 95: 779-786. doi: 10.1002/aocs.12086
    [52]
    WANG Y, YANG B, WAN B, et al. Degradation of Black Phosphorus: A Real-Time 31P NMR Study[J]. 2D Mater, 2016, 3: 035025. doi: 10.1088/2053-1583/3/3/035025
    [53]
    MAZUMDER A, KUMAR A, PUROHIT A K, et al. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents[J]. Anal Bioanal Chem, 2012, 402: 1643–1652. doi: 10.1007/s00216-011-5561-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (412) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return