Volume 67 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
CHANG Zhikun, ZHANG Wanyi, SHEN Xiaoyu, MU Qun, HAN Xiaoling, SONG Song, NIU Pengfei, DENG Xiao, CHENG Xinbin. Design and Simulation of a Self-Traceable MOEMS Accelerometer Oscillator[J]. Metrology Science and Technology, 2023, 67(6): 9-15, 43. doi: 10.12338/j.issn.2096-9015.2023.0109
Citation: CHANG Zhikun, ZHANG Wanyi, SHEN Xiaoyu, MU Qun, HAN Xiaoling, SONG Song, NIU Pengfei, DENG Xiao, CHENG Xinbin. Design and Simulation of a Self-Traceable MOEMS Accelerometer Oscillator[J]. Metrology Science and Technology, 2023, 67(6): 9-15, 43. doi: 10.12338/j.issn.2096-9015.2023.0109

Design and Simulation of a Self-Traceable MOEMS Accelerometer Oscillator

doi: 10.12338/j.issn.2096-9015.2023.0109
  • Received Date: 2023-04-14
  • Accepted Date: 2023-05-08
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-07-27
  • Publish Date: 2023-06-18
  • MOEMS accelerometers are emerging as a pivotal trend in acceleration sensor technology. The accuracy of their measurements predominantly hinges on optical displacement detection methods. The coherent design and the congruence of the oscillator are pivotal for maximizing measurement efficacy. This study introduces a super-precise displacement measurement method, the self-traceable grating interferometry, marked by its direct traceability, high precision, and miniaturization, aligning seamlessly with the displacement measurement prerequisites of MOEMS accelerometers. Leveraging the properties of the self-traceable grating interferometry, we design, calculate, and simulate the oscillator of a self-traceable MOEMS accelerometer. Through the mechanical theory model, we deduced the stiffness and natural frequency of the oscillator. Utilizing the COMSOL software, simulations were run on its resonant modes, axial sensitivities, and stress distributions. Our design achievements include a oscillator with a remarkable displacement sensitivity reaching 10.01 μm/g and exhibiting minimal cross-coupling. Such advancements underscore the value of this research in the realm of direct traceability and the refinement of high-precision accelerometer measurement paradigms.
  • loading
  • [1]
    RU X, GU N, SHANG H, et al. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends [J]. Micromachines, 2022, 13(6): 879. doi: 10.3390/mi13060879
    LENOBLE A, LAVIEVILLE P, FOLOPPE Y, et al. High-end inertial navigation demonstration based on MEMS accelerometers [C]. ISS, 2022.
    KONTELIS S, PSYCHALINOS C. Comparison of Complementary Filters Implementations for Unmanned Aerial Vehicles [C]. PACET, 2022.
    LOZA E A T, NIETO A C, BUSTAMANTE S G H. Accelerometer prototype with combined filtering for noise attenuation using an embedded system and low-cost MEMS sensors for building monitoring [C]. INTERCON, 2022.
    OCZAK M, BAYER F, VETTER S, et al. Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data [J]. Computers and Electronics in Agriculture, 2022, 192: 106517. doi: 10.1016/j.compag.2021.106517
    LI C, YANG B, ZHENG X, et al. Nano-g Micro-Optics Accelerometer With Force Feedback Control and Improved Dynamic Range [J]. IEEE Sensors Journal, 2022, 22(14): 14018-14025. doi: 10.1109/JSEN.2022.3183640
    SHOKOUHMAND A, WEN H, KHAN S, et al. Diagnosis of Peripheral Artery Disease Using Backflow Abnormalities in Proximal Recordings of Accelerometer Contact Microphone (ACM) [J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 274-285. doi: 10.1109/JBHI.2022.3218595
    MALAYAPPAN B, LAKSHMI U P, RAO B V V S N P, et al. Sensing Techniques and Interrogation Methods in Optical MEMS Accelerometers: A Review [J]. IEEE Sensors Journal, 2022, 22(7): 6232-6246. doi: 10.1109/JSEN.2022.3149662
    LU Q, WANG Y, WANG X, et al. Review of micromachined optical accelerometers: from mg to sub-μg [J]. Opto-Electronic Advances, 2021, 4(3): 20004501-20004515.
    ABBASPOUR-SANI E, RUEY-SHING H, CHEE YEE K. A novel optical accelerometer [J]. IEEE Electron Device Letters, 1995, 16(5): 166-168. doi: 10.1109/55.382228
    CHEN L H, LIN Q, LI S, et al. Optical accelerometer based on high-order diffraction beam interference [J]. Applied Optics, 2010, 49(14): 2658-2664. doi: 10.1364/AO.49.002658
    ZHOU F, BAO Y L, MADUGANI R, et al. Broadband thermomechanically limited sensing with an optomechanical accelerometer [J]. Optica, 2021, 8(3): 350-356. doi: 10.1364/OPTICA.413117
    ZHANG T, LIU H, FENG L, et al. Noise suppression of a micro-grating accelerometer based on the dual modulation method [J]. Applied Optics, 2017, 56(36): 10003. doi: 10.1364/AO.56.010003
    宫美梅, 王策, 金丽, 等. 抑制交叉轴干扰的纳米光栅加速度计 [J]. 传感器与微系统, 2022, 41(3): 20-23, 31.
    万峰华. 集成光学加速度计及测试系统的设计 [D]. 南京: 东南大学, 2016.
    王俊. 振子型光纤光栅加速度计关键技术研究 [D]. 长沙: 国防科学技术大学, 2016.
    PURDY T P, PETERSON R W, REGAL C A. Observation of Radiation Pressure Shot Noise on a Macroscopic Object [J]. Science, 2013, 339(6121): 801-804. doi: 10.1126/science.1231282
    TANG S H, LIU H F, YAN S T, et al. A high-sensitivity MEMS gravimeter with a large dynamic range [J]. Microsystems & Nano engineering, 2019, 5(1): 11.
    MCCLELLAND J J, ANDERSON W R, BRADLEY C C, et al. Accuracy of Nanoscale Pitch Standards Fabricated by Laser-Focused Atomic Deposition [J]. J Res Natl Inst Stand Technol, 2003, 108(2): 99-113. doi: 10.6028/jres.108.0010
    林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26. doi: 10.12338/j.issn.2096-9015.2022.0248
    DENISHEV K H, PETROVA M R. Accelerometer design [J]. Proceedings of ELECTRONICS, 2007, 2007: 159-164.
    赵文静. 基于SOI技术的MEMS惯性加速度计的设计与优化 [D]. 成都: 电子科技大学, 2010.
    ZHANG Y, GAO S, XIONG H, et al. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error [J]. Optics Express, 2019, 27(5): 6565-6579. doi: 10.1364/OE.27.006565
    GAO S, ZHOU Z, ZHANG Y, et al. High-resolution micro-grating accelerometer based on a gram-scale proof mass [J]. Optics Express, 2019, 27(23): 34299-34312.
    王云阳. 笼型感应电机断条故障时的转子受力计算与分析 [D]. 哈尔滨: 哈尔滨理工大学, 2014.
    赵双双. 微光学集成的高精度MOEMS加速度传感器研究 [D]. 杭州: 浙江大学, 2013.
    樊伟, 冯德全, 乔学光. 基于膜片式悬臂梁的低频光纤光栅加速度计(特邀)[J]. 光子学报, 2022, 51(10): 181-190.
    禹大宽, 王向宇, 高宏, 等. 基于对称铰链的光纤布拉格光栅高频加速度检波器(特邀)[J]. 光子学报, 2022, 51(10): 172-180.
    郑翔, 杨波. 基于激光器调制的微光栅加速度计噪声抑制[J]. 兵器装备工程学报, 2022, 43(10): 300-305. doi: 10.11809/bqzbgcxb2022.10.043
    龙宽, 瞿剑苏, 乔磊, 等. 一种几何参数随动校准装置的研究[J]. 计量科学与技术, 2022, 66(3): 41-48.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (258) PDF downloads(44) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint