Volume 67 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
SUN Ruoduan, HE Yingwei, LIU Xinmeng. Design and Measurability Study of Wavelength Calibration Devices for Grating Monochromators[J]. Metrology Science and Technology, 2023, 67(6): 3-8. doi: 10.12338/j.issn.2096-9015.2023.0134
Citation: SUN Ruoduan, HE Yingwei, LIU Xinmeng. Design and Measurability Study of Wavelength Calibration Devices for Grating Monochromators[J]. Metrology Science and Technology, 2023, 67(6): 3-8. doi: 10.12338/j.issn.2096-9015.2023.0134

Design and Measurability Study of Wavelength Calibration Devices for Grating Monochromators

doi: 10.12338/j.issn.2096-9015.2023.0134
  • Received Date: 2023-05-17
  • Accepted Date: 2023-08-01
  • Rev Recd Date: 2023-08-03
  • Available Online: 2023-08-08
  • Publish Date: 2023-06-18
  • This paper presents a comprehensive measurability analysis for grating monochromator wavelength calibration devices based on continuous spectrum light sources and Fourier Transform Spectrometers (FTS). The study identifies and extracts critical parameters such as wavelength indication error, spectral bandwidth, and wavelength repeatability for achieving measurability. The research delves into the metrological design, emphasizing the measurement methodologies for wavelength indication error, the routes for traceability, and the interface dynamics between optics and mechanics. The veracity of the proposed metrological design is tested through a series of experiments. The study adopts a life-cycle approach for the device's measurability design, analyzing from the vantage points of multiple stakeholders and under varied scenarios. The overarching goal of this research is to ensure that all requirements for measurement instruments are meticulously addressed. By sequentially addressing potential pitfalls, this study aims to mitigate management oversights during the project's progression, thereby enhancing the likelihood of success for the measurement device's development.
  • loading
  • [1]
    Palmer C . Diffraction Grating Handbook[M]. New York: Newport Corporation, 2005.
    [2]
    金伟其. 辐射度 光度与色度及其测量[M]. 北京: 北京理工大学出版社, 2006.
    [3]
    Malmstadt V. Wavelength accuracy of a microprocessor controlled ultraviolet visible monochromator[J]. Analytical Chemistry, 1982, 54(11): 1826-1828. doi: 10.1021/ac00248a039
    [4]
    Petersen H . The plane grating and elliptical mirror: A new optical configuration for monochromators[J]. Optics Communications, 1982, 40(6): 402-406. doi: 10.1016/0030-4018(82)90040-2
    [5]
    Zwinkels J C , Gignac D S , Nevins M , et al. Design and testing of a two monochromator reference spectrophotometer for high-accuracy total radiance factor measurements[J]. Applied Optics, 1997, 36(4): 892-902.
    [6]
    李挺. 日冕单色仪的一种设计方案[J]. Chinese Journal of Astronomy and Astrophysics, 1984(1): 76-81.
    [7]
    Rosfjord K M , Villalaz R A , Gaylord T K. Constant bandwidth scanning of the Czerny-Turner monochromator[J]. Applied Optics, 2000, 39(4): 568.
    [8]
    刘汉臣, 王秋萍, 张崇辉, 等. 光栅扫描光谱仪参数的研究[J]. 应用光学, 2008, 29(4): 4.
    [9]
    夏志伟, 王凯, 方伟, 等. 基于航天单色仪的在轨辐射定标应用与发展[J]. 光学精密工程, 2015, 23(7): 1880-1891.
    [10]
    贾瑞栋. 太阳光谱辐照度绝对测量及其定标单色仪[J]. 发光学报, 2017, 38(8): 5.
    [11]
    林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26.
    [12]
    欧阳慧泉, 代彩红, 黄勃, 等. Czerny-Turner型双光栅单色仪波长驱动与波长校准研究[C]. 西安: 中国计量测试学会光辐射计量专委会, 2011.
    [13]
    冯国进, 甘海勇, 赫英威, 等. 一种基于谱线灯组的高精度光谱仪波长标定装置: CN201721657440. X [P]. 2017-12-01.
    [14]
    冯国进, 王煜, 郭亭亭. 傅里叶红外光谱仪波长校准技术研究[C]. 西安: 中国计量测试学会光辐射计量专委会, 2011.
    [15]
    冯国进, 马宇轩, 梁凤臣, 等. 聚苯乙烯红外波长标准物质的研制[J]. 计量技术, 2019(12): 3-5, 10.
    [16]
    Bare W D , Demas J N . Monochromator Wavelength Calibration Standards Extending into the Near-Infrared Using Second- and Third-Order Emission Lines from Mercury Vapor Lamps[J]. Journal of Fluorescence, 2000, 10(4): 317-324.
    [17]
    刘想靓, 甘海勇, 赫英威, 等. 高精度宽光谱低温绝对辐射计研制[J]. 计量科学与技术, 2021(2): 39-43, 53.
    [18]
    王常世. 基于连续谱光源和傅里叶变换光谱仪的单色仪波长准确性校准研究[D]. 北京: 北京理工大学, 2018.
    [19]
    徐晓梅. 略论产品的“可计量性”概念及与“可测试性”的关系[J]. 中国计量, 2017(2): 41-45.
    [20]
    袁慧秀, 王俊博, 陈申, 等. 直升机可计量性设计流程分析及参考模型构建[J]. 宇航计测技术, 2022, 42(1): 85-92. doi: 10.12060/j.issn.1000-7202.2022.01.15
    [21]
    梁向东. 航空专用测试设备可计量性设计[J]. 洪都科技, 2004(2): 40-43.
    [22]
    蒋薇, 张玘, 汪静. 装备可计量性的相关性模型研究与分析[J]. 电子测量与仪器学报, 2012, 26(4): 299-304.
    [23]
    Rossi G B . Measurability[J]. Measurement, 2007, 40(6): 545-562. doi: 10.1016/j.measurement.2007.02.003
    [24]
    吕琦, 王俊博, 张颖, 等. 低频标准振动台的可计量性设计研究[J]. 计量科学与技术, 2022, 66(4): 101-107.
    [25]
    赵文燕, 李颖. 模糊FEMA在机械设备风险管理中的应用[J]. 现代机械, 2017(5): 47-50.
    [26]
    牙东北. 基于FEMA制定设备维护策略方法[J]. 中国设备工程, 2019(20): 35-36.
    [27]
    Schneider H , Stamatis D H. Failure Mode And Effect Analysis[J]. Technometrics, 1996, 38(1): 80.
    [28]
    孙玉芝. 633nm波长国家计量基准实现自动锁峰[J]. 中国计量, 2000(3): 36.
    [29]
    国家市场监督管理总局. 通信用光波长计检定规程: JJG 963-2022 [S]. 北京: 中国计量出版社, 2022.
    [30]
    冷玉国, 陶磊, 徐健. 基于80 m测量装置的双频激光干涉仪系统精度及影响因素分析[J]. 计量与测试技术, 2011, 38(9): 47-49.
    [31]
    国家质量监督检验检疫总局. 紫外、可见、近红外分光光度计检定规程: JJG 178-2007 [S]. 北京: 中国计量出版社, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (451) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return