Volume 67 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HAN Zhixin, HE Chuan, ZHAO Jing, WEN Jie. Research on Calibration Methods for Scanning Switches in Automatic Temperature Measurement Systems[J]. Metrology Science and Technology, 2023, 67(7): 18-24, 10. doi: 10.12338/j.issn.2096-9015.2023.0146
Citation: HAN Zhixin, HE Chuan, ZHAO Jing, WEN Jie. Research on Calibration Methods for Scanning Switches in Automatic Temperature Measurement Systems[J]. Metrology Science and Technology, 2023, 67(7): 18-24, 10. doi: 10.12338/j.issn.2096-9015.2023.0146

Research on Calibration Methods for Scanning Switches in Automatic Temperature Measurement Systems

doi: 10.12338/j.issn.2096-9015.2023.0146
  • Received Date: 2023-06-09
  • Accepted Date: 2023-07-24
  • Rev Recd Date: 2023-08-03
  • Available Online: 2023-08-11
  • Publish Date: 2023-07-18
  • In automatic temperature measurement systems, the mismatch between the computer-controlled scanning switch channel switching time and the sampling time of electrical measuring instruments can lead to data acquisition distortion. Building upon existing calibration techniques addressing parasitic potential and channel-to-channel data acquisition disparities, a novel calibration method focusing on dynamic acquisition differences among scanning switch channels is proposed. By scrutinizing metrological attributes delineated in current national standards, a calibration measurement standard for scanning switches was established and validated through feasibility trials. Within the trials, the calibration methodology was verified using conversion switches in both thermocouple and thermal resistance automatic measurement systems. Based on the experimental outcomes, refinements were made to the calibration method, followed by validation testing. The findings underscore that the calibration method, predicated on dynamic acquisition discrepancies among scanning switch channels, effectively tackles the measurement issues of dynamic channel differences, aligning with the requisite stipulations of existing national standards. This method holds significant practical value for data acquisition in automatic temperature measurement systems, ensuring precise and reliable temperature measurement data.
  • loading
  • [1]
    魏寿芳, 陈乐, 沈正宇, 等. 热电偶、热电阻自动测量系统: JJF 1098-2003[S]. 北京: 中国计量出版社, 2003.
    [2]
    廖艳, 陈桂生, 赵晶, 等. 1590超级测温仪自动测试系统的开发[J]. 中国测试, 2011, 37(3): 67-69.
    [3]
    廖艳, 付志勇, 韩志鑫. 工业热电阻自动检定系统的软件设计与开发[J]. 中国测试, 2015, 41(4): 77-80. doi: 10.11857/j.issn.1674-5124.2015.04.020
    [4]
    韩志鑫, 廖艳, 冯锦, 等. 基于温度自动测量系统检定AA级工业热电阻的方法研究[J]. 中国测试, 2022, 48(S2): 44-49.
    [5]
    韩志鑫, 贾广成, 杨锐, 等. 校准300℃及以下廉金属热电偶自动测量系统的测试方法研究[J]. 中国测试, 2022, 48(S1): 7-12.
    [6]
    钱璐帅. 低热电势多通道扫描开关研制[D]. 杭州: 中国计量大学, 2017.
    [7]
    Braudaway D W, Kleimann R E. A High-Resolution Prototype System for Automatic Measurement of Standard Cell Voltage[J]. IEEE Transactions on Instrumentation and Measurement, 1974, 23(4): 282-286. doi: 10.1109/TIM.1974.4314293
    [8]
    Marshall J A, Marshall T A, Jarrett D G, et al. A low thermal guarded scanner for high resistance measurement systems[C]. Proceedings of 1996 Conference on Precision Electromagnetic Measurements (CPEM 1996), 1996: 20-21.
    [9]
    Jarrett D G, Marshall J A, Marshall T A, et al. Design and evaluation of a low thermal electromotive force guarded scanner for resistance measurements[J]. Review of Scientific Instruments, 1999, 70(6): 2866-2871. doi: 10.1063/1.1149810
    [10]
    Oe T, Kaneko N H. Evaluation of the automatic coaxial mechanical scanner for high-resistance measurement use[C]. Proceedings of 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), 2016: 1-2.
    [11]
    牟文殊. 低热电势扫描器[J]. 计量技术, 1988(4): 13-15.
    [12]
    王磊, 刘瑞珉. 多路低热电势程控开关的研制[J]. 电测与仪表, 2004, 41(10): 44-46. doi: 10.3969/j.issn.1001-1390.2004.10.013
    [13]
    倪巍, 罗进, 陈婧. 基于电子扫描开关的标准电阻自动巡检装置的研究及设计[J]. 仪表技术, 2011(8): 33-35. doi: 10.3969/j.issn.1006-2394.2011.08.011
    [14]
    国家市场监督管理总局. 标准铂铑10-铂热电偶: JJG 75-2022[S]. 北京: 中国标准出版社, 2023.
    [15]
    国家质量监督检验检疫总局. 工作用贵金属热电偶: JJG 141-2013[S]. 北京: 中国质检出版社, 2013.
    [16]
    国家质量监督检验检疫总局. 工业铂、铜热电阻: JJG 229-2010[S]. 北京: 中国计量出版社, 2010.
    [17]
    国家质量监督检验检疫总局. 廉金属热电偶: JJF 1637-2017 [S]. 北京: 中国质检出版社, 2018.
    [18]
    国家质量监督检验检疫总局. 热电偶检定炉温度场测试技术规范: JJF 1184-2007 [S]. 北京: 中国计量出版社, 2008.
    [19]
    国家质量监督检验检疫总局. 铠装热电偶: JJF 1262-2010 [S]. 北京: 中国计量出版社, 2010.
    [20]
    国家质量监督检验检疫总局. 恒温槽技术性能测试规范: JJF 1030-2010 [S]. 北京: 中国计量出版社, 2010.
    [21]
    郑玮, 汤磊. 标准铂铑10-铂热电偶热电势约束公式探讨[J]. 计量学报, 2020, 41(2): 175-178.
    [22]
    汤磊, 罗小萍, 张曦雯, 等. 0℃~419.527℃温区标准铂铑10-铂热电偶线性内插公式计算方法的实验验证[J]. 计量技术, 2019(7): 9.
    [23]
    陈清清, 潘江, 袁定琨. 一种新型高温热电偶性能测试系统的研制[J]. 计量学报, 2022, 43(11): 1424-1430. doi: 10.3969/j.issn.1000-1158.2022.11.06
    [24]
    陈桂生, 付志勇, 韩志鑫, 等. 量值传递中绝对测量与相对测量转化实例的数理分析(一)[J]. 中国测试, 2016, 42(11): 1-5. doi: 10.11857/j.issn.1674-5124.2016.11.001
    [25]
    陈桂生, 赵晶, 廖艳, 等. 量值传递中绝对测量与相对测量转化实例的数理分析(二)[J]. 中国测试, 2017, 43(1): 1-7. doi: 10.11857/j.issn.1674-5124.2017.01.001
    [26]
    侯素兰, 王浩, 高福生, 等. JJF1637-2017《廉金属热电偶校准规范》解读[J]. 中国计量, 2018 (5): 129-130. doi: 10.16569/j.cnki.cn11-3720/t.2018.05.057
    [27]
    国防科工委科技与质量司. 热学计量[M]. 北京: 原子能出版社, 2002.
    [28]
    国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国质检出版社, 2013.
    [29]
    国家质量监督检验检疫总局. 通用计量术语及定义: JJF 1001-2011[S]. 北京: 中国计量出版社, 2011.
    [30]
    王为农. 校准: 定义的解读和结果的测量不确定度表达[J]. 计量科学与技术, 2023, 67(2): 58-61. doi: 10.12338/j.issn.2096-9015.2022.0225
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (347) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return