Volume 67 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LIU Weiguang, GUO Shenhui, JING Jun, GE Rui, WANG Congxian, REN Xiaoqing. Study on Key Parameters of Flow Element for Particle Samplers[J]. Metrology Science and Technology, 2023, 67(7): 45-52. doi: 10.12338/j.issn.2096-9015.2023.0175
Citation: LIU Weiguang, GUO Shenhui, JING Jun, GE Rui, WANG Congxian, REN Xiaoqing. Study on Key Parameters of Flow Element for Particle Samplers[J]. Metrology Science and Technology, 2023, 67(7): 45-52. doi: 10.12338/j.issn.2096-9015.2023.0175

Study on Key Parameters of Flow Element for Particle Samplers

doi: 10.12338/j.issn.2096-9015.2023.0175
  • Received Date: 2023-07-24
  • Accepted Date: 2023-09-04
  • Rev Recd Date: 2023-09-22
  • Available Online: 2023-10-10
  • Publish Date: 2023-07-18
  • This study focuses on addressing the shortcomings of commonly utilized flow orifice elements in particle samplers by developing an orifice flow element capable of measuring flow rates ranging from 1 to 120 L/min. Within this flow range, the Reynolds number at the inlet of the flow element does not exceed 2000, ensuring primarily laminar flow conditions. This exceeds the operational range of differential pressure flow elements as per existing standards. To ensure optimal flow performance of the new orifice plates, it is imperative to define the maximum allowable mechanical machining deviations for key parameters such as orifice plate thickness (E), throttling orifice thickness (e), and pressure tap locations. Computational fluid dynamics simulations were employed to determine these maximum allowable deviations in the geometric dimensions. For orifice plates operating in the 1 to 10 L/min range, the suggested E value is 1.6 mm, with a maximum allowable deviation of ±6.25%, and for e, a value of 1.16 mm is recommended with a deviation of ±2.5%. For the 10 to 100 L/min range, an E value of 3.2 mm is recommended with a deviation of ±6.25%, and an e value of 2.00 mm with a deviation of ±5%. The D-D/2 method was used for pressure tapping, with upstream accuracy being ±0.1D and downstream accuracy ±0.05D. Based on these key dimensions, the designed orifice plates exhibited an outflow coefficient linearity and machining consistency better than 1.5%.
  • loading
  • [1]
    国家质量监督检验检疫总局. 用安装在圆形截面管道中的差压装置测量满管流体流量-第2部分: 孔板: GB/T2624-2-2006 [S]. 北京: 中国标准出版社, 2007.
    [2]
    赵宁, 牛立娜, 梁玉娇, 等. 智能孔口流量计校准方法研究[J]. 河北大学学报(自然科学版), 2015, 35(5): 546-551.
    [3]
    Liu W G, Xu Y, Zhang T, et al. Experimental optimization for dual support structures cone flow meters based on cone wake flow field characteristics[J]. Sensors & Actuators: A. Physical, 2015, 232: 115-131.
    [4]
    齐锋锋, 徐英, 张涛, 等. 双支撑锥形流量计蒸汽可膨胀修正系数的研究[J]. 电子测量与仪器学报, 2016(1): 118-125. doi: 10.13382/j.jemi.2016.01.015
    [5]
    国家标准化委员会. 封闭管道中流体流量的测量- V 形内锥流量测量节流装置: GB/T 30243-2013[S]. 北京: 中国标准出版社, 2013.
    [6]
    徐英, 陈吴晓, 张涛, 等. 湍流模型对双支撑型V 锥流量计的适用性研究[J]. 仪器仪表学报, 2015(2): 359-465.
    [7]
    刘伟光, 张涛, 徐英, 等. 基于黏性比例因子的锥形流量计最优锥角选择[J]. 仪器仪表学报, 2015(7): 359-465. doi: 10.3969/j.issn.0254-3087.2015.07.007
    [8]
    刘伟光, 张涛, 邢通, 等. 锥形流量计下游支撑及取压位置的试验研究[J]. 机械工程学报, 2015(10): 193-220.
    [9]
    赵保生, 刘志森, 黄富贵. 基于CFD的提高靶式流量计静态特性的方法研究[J]. 仪器仪表学报, 2018, 39(10): 85-92. doi: 10.19650/j.cnki.cjsi.J1803876
    [10]
    李坤鹏, 徐雅, 谢代梁, 等. 大口径超声波流量计内部流-声耦合特性仿真分析[J]. 电子测量与仪器学报, 2020, 34(7): 8-14. doi: 10.13382/j.jemi.B2002888
    [11]
    宋述古, 刘伟光, 李忠, 等. 撬装现场气体流量标准装置的研究[J]. 计量科学与技术, 2020(9): 66-71. doi: 10.3969/j.issn.1000-0771.2020.09.15
    [12]
    国家质量监督检验检疫总局. 用安装在圆形截面管道中的差压装置测量满管流体流量. 第4部分: 文丘里管: GB/T2624-2-2006 [S]. 北京: 中国标准出版社, 2007.
    [13]
    黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6,12.
    [14]
    冯建, 朱敏. 一种瞬时流速流量计模块研究与设计[J]. 计量科学与技术, 2021, 65(8): 29-32. doi: 10.12338/j.issn.2096-9015.2020.0427
    [15]
    宋述古, 刘伟光, 张强, 等. 孔口流量计正压测试夹具和可膨胀系数的研究[J]. 仪器仪表学报, 2022, 43(1): 19-27.
    [16]
    曾立民, 于雪娜, 刘红杰, 等. 固定源排放气体的颗粒物采集监测装置: CN200410042746.5[P]. 2023-09-22.
    [17]
    王鑫慧, 康鹏桂, 周克媛, 等. 基于差压式流量计的大气总悬浮颗粒物采样器流量仿真研究[J]. 机电工程技术, 2021, 50(5): 3. doi: 10.3969/j.issn.1009-9492.2021.05.008
    [18]
    张瑞达, 梁杨朋, 李睿奇. 混合钟罩式气体流量标准装置测控系统[J]. 计量科学与技术, 2021, 65(10): 58-62. doi: 10.12338/j.issn.2096-9015.2020.0245
    [19]
    陈镜霞. 高效环境空气颗粒物采样器: CN201810216061. X[P]. 2023-09-22.
    [20]
    吕昌刚, 高加喜, 张丽宁. 一种恒温双路大气及颗粒物采样器: CN201721764984.6[P]. 2023-09-22.
    [21]
    吕昌刚, 高加喜, 姜兵, 等. 一种大气及颗粒物采样器: CN201922422563.0[P]. 2023-09-22.
    [22]
    孙夕秋. 一种单通道颗粒物采样器: CN204188425U[P]. 2014-11-25.
    [23]
    陈圻圻. 三角形孔口多孔板水力空化发生器的数值模拟与实验研究[D]. 杭州: 浙江工业大学, 2012.
    [24]
    刘志雄, 江耀祖, 黄国兵. 构皮滩电站尾水调压室阻抗孔口型式研究[J]. 人民长江, 2006, 37(3): 82-83. doi: 10.3969/j.issn.1001-4179.2006.03.029
    [25]
    李海峰. 差压式(孔板)流量计容易出现的问题及解决方法[J]. 江苏现代计量, 2010(3): 2.
    [26]
    梁政. 差压式流量计孔板节流孔直径测量结果不确定度评定[J]. 中国计量, 2013(5): 2. doi: 10.3969/j.issn.1006-9364.2013.05.042
    [27]
    王国永. 节流式差压流量计的新进展之一调整型孔板405C和1595[J]. 自动化与仪器仪表, 2011(3): 67-68,71. doi: 10.3969/j.issn.1001-9227.2011.03.026
    [28]
    陆玉城, 裴全斌, 陈福权, 等. 差压式流量计——孔板开孔内径的简化计算方法探讨[J]. 工业计量, 2011, 21(5): 3. doi: 10.3969/j.issn.1002-1183.2011.05.008
    [29]
    丁兆臣. 差压测量对天然气流量孔板计量的影响[J]. 世界仪表与自动化, 2001, 5(2): 2.
    [30]
    于殿泓, 李琳, 姜明, 等. 差压式流量计孔板检测仪及其检测方法: CN 201010105710[P]. 2023-09-22.
    [31]
    王蕾, 高峰, 孟涛, 等. 新型大气采样器校准方法研究及不确定度评定[J]. 计量科学与技术, 2021(8): 6. doi: 10.12338/j.issn.2096-9015.2020.9005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(9)

    Article Metrics

    Article views (175) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return