Volume 68 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
AN Qichang, WU Xiaoxia, ZHANG Jingxu, LI Hongwen. Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes[J]. Metrology Science and Technology, 2024, 68(4): 18-25. doi: 10.12338/j.issn.2096-9015.2023.0260
Citation: AN Qichang, WU Xiaoxia, ZHANG Jingxu, LI Hongwen. Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes[J]. Metrology Science and Technology, 2024, 68(4): 18-25. doi: 10.12338/j.issn.2096-9015.2023.0260

Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes

doi: 10.12338/j.issn.2096-9015.2023.0260
  • Received Date: 2023-11-05
  • Accepted Date: 2023-12-22
  • Rev Recd Date: 2023-12-22
  • Available Online: 2024-04-19
  • Publish Date: 2024-04-01
  • To better control large field of view active optical telescopes, this paper explains the basic principles of detecting and calibrating the adjustment components in telescopes based on internal and external measurement systems. Error analysis is performed on the calibration process of large field of view active optical telescopes, and the principle of the detection method for motion components of large field of view active optical telescopes is demonstrated through desktop experiments. Non-diffractive uniform beam splitting is achieved, overcoming the disadvantages of diffractive beam splitting, such as multiple stray fringes and small splitting angles. The dispersion angle is higher than 100°, with an accuracy better than 15 µm and an angular accuracy better than 3″. The calibration accuracy based on wavefront sensing is better than 10 µm, which can effectively improve the calibration accuracy of the adjustment elements of large-aperture, large field of view telescopes and ultimately enhance the imaging quality of the telescopes.
  • loading
  • [1]
    Yan H , Li H , Wang S , et al. Overview of the LAMOST survey in the first decade[J]. The Innovation, 2022, 3(2): 16
    [2]
    Gabriele U, Daniele V, Jacopo F, et al. Deformable lens for testing the performance of focal plane wavefront sensing using phase diversity[J]. In Proceedings of the Proc. SPIE, 2022, 1: 121856W.
    [3]
    Daniel C, Brian M, Joseph D A, et al. Piston-tip-tilt mirror array in the wide field phasing testbed for the Giant Magellan Telescope[J]. In Proceedings of the Proc. SPIE, 2022, 2: 121854I.
    [4]
    McLeod B, Bouchez A H, Catropa D, et al. The wide field phasing testbed for the Giant Magellan Telescope[J]. Astronomical Telescopes & Instrumentation, 2022, 12182(1218208): 1-16
    [5]
    安其昌, 吴小霞, 张景旭, 等. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文), 2023, 16(2): 358-365.
    [6]
    Flaugher B, Diehl H T, Honscheid K, et al. The Dark Energy Camera[J]. The Astronomical Journal, 2015, 150(5): 1 .
    [7]
    Manuel A M, Phillion D W, Olivier S S, et al. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST)[J]. Optics Express, 2010, 18(2): 1528-1552. doi: 10.1364/OE.18.001528
    [8]
    Shiang Y, David F, Mark A. et al. Prime focus instrument of prime focus spectrograph for Subaru telescope[C]. Proceedings of SPIE, 2014.
    [9]
    Simons D A , Crampton D , Pat Côté, et al. Current status and future plans for the Maunakea Spectroscopic Explorer (MSE)[C]. Ground-based & Airborne Telescopes V. International Society for Optics and Photonics, 2014.
    [10]
    Holzlohner R, Taubenberger S, Rakich A, et al. Focal-plane wavefront sensing for active optics in the VST based on an analyti-cal optical aberration model[C]. Proceedings of SPIE, 2016 .
    [11]
    范文强, 王志臣, 陈宝刚, 等 地基大口径拼接镜面主动控制技术综述[J]. 中国光学(中英文), 2020, 13(6): 1194-1208.
    [12]
    Wilhelm R , Luong B , Courteville A , et al. Dual-wavelength low-coherence instantaneous phase-shifting interferometer to measure the shape of a segmented mirror with subnanometer precision[J]. Applied Optics, 2008, 47(29): 5473-5491.
    [13]
    Codona J L , Doble N . James Webb Space Telescope segment phasing using differential optical transfer functions[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1: 029001.
    [14]
    Warren P G , Vosteen L L A , Draaisma F , et al. Wavefront sensor for the ESA-GAIA mission[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7439: 743914.
    [15]
    Ramsey L, Adams M, Barnes T, et al. Early performance and present status of Hobby Eberly Telescope [C]. In Advanced Technology Optical/IR Telescopes VI, 1998.
    [16]
    Stobie R, Meriing J, Buclaey D. Design of the Southern African Large Telescope [C]. In Optical Design, Materials, Fabrication, and Maintenance, 2000.
    [17]
    Su D, Cui X, Wang Y, et al. Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology[J]. Astronomical Telescopes and Instrumentation, 1998, 1: 76-90.
    [18]
    赵惠, 易红伟, 樊学武, 等. 位相差异波前传感技术在大型空间光学相机中的应用[J]. 光子学报, 2017, 46(1): 73-84.
    [19]
    Yue D, Xu S, Nie H, et al. Co-phasing of the segmented mirror and image retrieval based on phase diversity using a modified algorithm.[J]. Applied Optics, 2015, 54(26): 7917-7924. doi: 10.1364/AO.54.007917
    [20]
    Eguchi A, Milster T D. Single-shot phase retrieval with complex diversity[J]. Optics Letters, 2019, 44(21): 5108-5111. doi: 10.1364/OL.44.005108
    [21]
    SAIF B, CHANEY D, GREENFIELD P, et al. Measurement of picometer-scale mirror dynamics[J]. Applied optics, 2017, 56(23): 6457-6465. doi: 10.1364/AO.56.006457
    [22]
    FEINBERG L D, DEAN B H, ARONSTEIN D L, et al. TRL-6 for JWST wavefront sensing and control[C]. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 2007.
    [23]
    KNIGHT J S, ACTON D S, LIGHTSEY P, et al. Integrated telescope model for the James Webb space telescope[C]. Modeling, Systems Engineering, and Project Management for Astronomy V, 2012.
    [24]
    ACTON D S, TOWELL T, SCHWENKER J, et al. End-to-end commissioning demonstration of the James Webb Space Telescope[C]. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 2007.
    [25]
    ACTON D S, ATCHESON P, CERMAK M, et al. James Webb Space Telescope wavefront sensing and control algorithms[C]. Optical, Infrared, and Millimeter Space Telescopes, 2004.
    [26]
    CHEN Wen. Optical cryptosystem based on single-pixel encoding using the modified Gerchberg–Saxton algorithm with a cascaded structure[J]. Journal of the Optical Society of America, 2016, 33(12): 2305-2311. doi: 10.1364/JOSAA.33.002305
    [27]
    徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展, 2023, 60(3): 91-110.
    [28]
    XU Xin, TAN Yidong, MU Henglin, et al. Laser Interferometric Multi-Degree-of-Freedom Measurement Technology in Space Gravitational-Wave Detection[J]. Laser and Optoelectronics Progress, 2023, 60(3): 91-110.
    [29]
    ANDRE A N, SANDOZ P, MAUZE B, et al. Sensing one nanometer over ten centimeters: A microencoded target for visual in-plane position measurement[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1193-1201. doi: 10.1109/TMECH.2020.2965211
    [30]
    CONTRERAS J, LIAHTSEY P. Optical design and analysis of the James Webb Space Telescope: optical telescope element[C]. Novel Optical Systems Design and Optimization VII, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (120) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return