LIU Jiaqi, ZHANG Guocheng, WU Dan, TIAN Ying, SHEN Shangyi, PAN Yiting, CHOU Jia. Evaluation of Sampling Efficiency in Respirable Dust Samplers Based on the Aerodynamic Method[J]. Metrology Science and Technology, 2024, 68(1): 18-23. DOI: 10.12338/j.issn.2096-9015.2023.0311
    Citation: LIU Jiaqi, ZHANG Guocheng, WU Dan, TIAN Ying, SHEN Shangyi, PAN Yiting, CHOU Jia. Evaluation of Sampling Efficiency in Respirable Dust Samplers Based on the Aerodynamic Method[J]. Metrology Science and Technology, 2024, 68(1): 18-23. DOI: 10.12338/j.issn.2096-9015.2023.0311

    Evaluation of Sampling Efficiency in Respirable Dust Samplers Based on the Aerodynamic Method

    • Respirable dust, defined as particles with an aerodynamic equivalent diameter of less than 7.1 μm that can enter the human lungs during breathing, poses significant health risks and is a source of pneumoconiosis. Its concentration requires stringent monitoring. The respirable dust sampler, a crucial component at the front end of dust concentration measuring instruments in the coal industry, has its efficiency determined by the ability of dust to pass through its pre-separation device. This study introduces a novel detection method for sampling efficiency based on the aerodynamic method, accompanied by a newly developed detection device. This method was applied to test various imported and domestic products. Compared to current standards, this method simplifies the process, directly traces particle size and concentration to the aerodynamic particle size spectrometer, significantly reduces the detection cycle by at least 98%, and offers good repeatability. It is not affected by complex steps like sampling, elution, and solution fluorescence determination, thereby greatly reducing detection costs. Testing revealed that only one out of six models of sampling heads met the required standards, highlighting the urgent need for quality improvement in these products.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return