Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
PANG Xinhua, ZHOU Xin, WU Tong, SHEN Qingfei, TANG Wei, LI Anxiang, MU Xiaotong, YANG Chao. Analysis and Extension of Validation Methods for SAR Measurement Systems[J]. Metrology Science and Technology, 2024, 68(5): 24-31. doi: 10.12338/j.issn.2096-9015.2023.0357
Citation: PANG Xinhua, ZHOU Xin, WU Tong, SHEN Qingfei, TANG Wei, LI Anxiang, MU Xiaotong, YANG Chao. Analysis and Extension of Validation Methods for SAR Measurement Systems[J]. Metrology Science and Technology, 2024, 68(5): 24-31. doi: 10.12338/j.issn.2096-9015.2023.0357

Analysis and Extension of Validation Methods for SAR Measurement Systems

doi: 10.12338/j.issn.2096-9015.2023.0357
  • Received Date: 2023-12-20
  • Accepted Date: 2024-01-08
  • Rev Recd Date: 2024-01-18
  • Available Online: 2024-03-12
  • Publish Date: 2024-05-18
  • Specific Absorption Rate (SAR) is a mandatory parameter for the personal safety of electromagnetic radiation involving wireless communication products. Due to the changing nature of the devices under test, the measurement system and methods need to be updated, which imposes new requirements for the validation of the measurement system. Based on an in-depth understanding of the validation methods in current standards, we analyze and measure the traditional validation methods for three steps: extrapolation routine verification, probe linearity verification, and modulation response verification. Using electromagnetic simulations and experimental measurements, we extended these validation methods to meet new testing requirements. The experimental results show that the extended validation methods are feasible and stable. As reference values were obtained through self-developed methods, the validation methods can be extended, allowing for customized validation configurations, such as validation points. This provides technical support for the research on validation methods for new and domestic SAR measurement systems.
  • loading
  • [1]
    ZHANG W, SONG G, ZHAO Q, et al. Discussion of measurement and evaluation of the radiation hazard of personal in mixed field[C]. 2020 6th Global Electromagnetic Compatibility Conference (GEMCCON), 2020.
    [2]
    SINGH J, KUMAR S, JOHNSON D M, et al. Electromagnetic Radiation Effects in Human and Animal Health[C]. 14th International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2023.
    [3]
    门俊琦, 姚斌伟, 郭家彬, 等. 电磁辐射防护抗氧化药物研究进展[J]. 军事医学, 2022, 46(10): 792-797.
    [4]
    I E MIGALEV, A A SOSHNIKOV, E V TITOV. Technology of Electromagnetic Radiation Danger Presentation[C]. 2019 International Ural Conference on Electrical Power Engineering (UralCon), 2019.
    [5]
    V L WALTER. Problems of human exposure in electromagnetic fields and radiation[C]. 2008 10th International Conference on Electromagnetic Interference & Compatibility, 2008.
    [6]
    武彤. 移动通信终端电磁辐射测试方法探讨[J]. 中华环境, 2016(z1): 40-75.
    [7]
    刘宇军, 武彤, 尹洪雁, 等. 射频电磁场比吸收率(SAR)测量技术[M] . 电子工业出版社, 2017: 5.
    [8]
    孙静, 魏作余. 智能手机电磁辐射研究[J]. 电子测试, 2017(10): 55-56. doi: 10.3969/j.issn.1000-8519.2017.10.025
    [9]
    沈际昊, 方宏萍. 手机电磁辐射研究[J]. 贵州农机化, 2022(3): 24-27.
    [10]
    翟明岳, 武彤. 电磁辐射风险沟通[M] . 北京: 海洋出版社, 2015: 10.
    [11]
    才辉, 钟华彧. 人体与手机不同距离下比吸收率的研究[J]. 安全与电磁兼容, 2014(2): 35-39. doi: 10.3969/j.issn.1005-9776.2014.02.005
    [12]
    WU T, ZHOU X, SHEN Q F, et al. Proficiency Testing for Complex Permittivity Measurements of Tissue Equivalent Liquid Used in SAR Assessment[J]. IEEE Access, 2020(8): 210592-210596.
    [13]
    K FUKUNAGA, S WATANABE, Y YAMANAKA. Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate[J]. IEEE Trans, Electromagn. Compat., 2004(46): 126-129.
    [14]
    M G DOUGLAS, M Y KANDA, W G LUENGAS, et al. An Algorithm for Predicting the Change in SAR in a Human Phantom Due to Deviations in Its Complex Permittivity[J]. IEEE Trans. Electromagn. Compat, 2009(51): 217-226.
    [15]
    ICNIRP. ICNIRP—International Commission on Non-ionizing Radiation Protection Guidelines for limiting exposure to electromagnetic fields(100 kHz to 300 GHz)[J]. Health Phys. , 2020(118): 483–524, 2020.
    [16]
    IEC. Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz) : IEC 62209-1: 2016 [S]. London, 2016.
    [17]
    IEC. Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields From Hand-Held and Body-Mounted Wireless Communication Devices—Part 1528: Human Models, Instrumentation, and Procedures (Frequency Range of 4 MHz to 10 GHz): IEEE/IEC 62209-1528 [S]. London, 2020.
    [18]
    IEC. Human Exposure to Radio Frequency Fields from Hand-Held and Body Mounted Wireless Communication Devices—Human Models, Instrumentation, and Procedures—Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz): IEEE/IEC 62209-3: 2019 [S]. London, 2019.
    [19]
    周鑫, 沈庆飞, 李安香, 等. 新一代无线设备最大辐射功率测试方法分析[J]. 计量科学与技术, 2021, 65(6): 9-13. doi: 10.12338/j.issn.2096-9015.2020.9008
    [20]
    周鑫, 冯志刚, 钟章队, 等. 频域信道测量中VNA测量不确定度传播规律[J]. 计量学报, 2017, 38(5): 641-644. doi: 10.3969/j.issn.1000-1158.2017.05.26
    [21]
    崔巍, 宋国栋, 张奇, 等. 电磁暴露危害及相关标准的探讨[J]. 安全与电磁兼容, 2022(3): 61-65. doi: 10.3969/j.issn.1005-9776.2022.03.012
    [22]
    林军, 林浩, 邹方竹, 等. 5G手机电磁辐射检测认证与探讨[J]. 安全与电磁兼容, 2020(3): 41-44.
    [23]
    辛娟. 双碳战略下的智能网联新能源汽车技术与应用[J]. 汽车与新动力, 2023, 6(6): 1-4. doi: 10.3969/j.issn.2096-4870.2023.06.001
    [24]
    宗苏灿. 新能源汽车智能驾驶的发展趋势分析[J]. 汽车与新动力, 2022, 5(5): 21-24.
    [25]
    张君兰. 基于智能网联技术的新能源汽车产业共同体研究[J]. 汽车与新动力, 2022, 5(4): 27-29 .
    [26]
    涂辉招. 上海智能网联汽车的新发展与新机遇[J]. 张江科技评论, 2022(1): 42-43 .
    [27]
    赵光辉, 李翔宇, 陈凯. 我国智能网联汽车发展现状研究[J]. 时代汽车, 2019(17): 153-154. doi: 10.3969/j.issn.1672-9668.2019.17.068
    [28]
    周鹏, 杨静. 基于5G技术的智能网联汽车发展现状与趋势分析[J]. 时代汽车, 2022(2): 33-34.
    [29]
    王健美, 魏晨, 胥彦玲, 等. 专利视角下全球智能网联汽车技术竞争态势分析[J]. 汽车技术, 2021(8): 20-29.
    [30]
    周晓塨. 智能网联汽车的前沿探讨[J]. 时代汽车, 2020(18): 48-49.
    [31]
    IEC. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices–Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz): IEC 62209-2: 2019 [S]. London, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (143) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return