Volume 68 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
PENG Zhixiang, PAN Guanfu, WU Tong, XU Dinghua, QIU Lin, HANG Chenzhe. Research Tatus of CO2 Detection Methods[J]. Metrology Science and Technology, 2024, 68(6): 25-32, 63. doi: 10.12338/j.issn.2096-9015.2024.0079
Citation: PENG Zhixiang, PAN Guanfu, WU Tong, XU Dinghua, QIU Lin, HANG Chenzhe. Research Tatus of CO2 Detection Methods[J]. Metrology Science and Technology, 2024, 68(6): 25-32, 63. doi: 10.12338/j.issn.2096-9015.2024.0079

Research Tatus of CO2 Detection Methods

doi: 10.12338/j.issn.2096-9015.2024.0079
  • Received Date: 2024-03-12
  • Accepted Date: 2024-03-20
  • Rev Recd Date: 2024-03-28
  • Available Online: 2024-04-19
  • Publish Date: 2024-06-30
  • CO2 is an important greenhouse gas that poses multifaceted hazards to the Earth's environment and human health. With the increase in industrialization, urbanization, and energy consumption, the emission of greenhouse gases such as CO2 in the atmosphere has continued to increase, raising concerns about global climate change. Therefore, the detection of CO2 concentration has become crucial. Currently, there are two main types of carbon emission measurement methods: testing methods and accounting methods. Testing methods have the advantages of high precision and real-time monitoring, making them more conducive to guiding the low-carbon transformation and operation of the unit compared to accounting methods. This paper mainly introduces the existing primary detection methods for CO2, which include chemical analysis methods and physical optical analysis methods. Chemical analysis methods mainly include potentiometric titration, chemical absorption, gas-sensitive sensing technology, gas chromatography, and mass spectrometry. Physical optical analysis methods include cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS), non-dispersive infrared (NDIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and tunable diode laser absorption spectroscopy (TDLAS). Traditional chemical analysis is more suitable for accurate detection of complex components but is usually not suitable for long-period online detection. With the rapid development of computer technology and optical detection technology, emerging physical optical detection technologies gradually play a greater advantage. This paper summarizes and analyzes various detection methods that can help researchers select suitable CO2 detection methods and provide data support for related industries. It can also help develop high-sensitivity and high-precision CO2 metrology and detection equipment, which can aid in implementing the dual-carbon policy and controlling ambient air quality.
  • loading
  • [1]
    凌定元. 温室效应危害及治理措施[J]. 纳税, 2018(13): 252.
    [2]
    WANG S, SHI C, FANG C, et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model[J]. Applied Energy, 2019, 235: 95-105. doi: 10.1016/j.apenergy.2018.10.083
    [3]
    郁丹, 唐人, 王艾荣. 国内固定排放源二氧化碳排放连续监测应用现状和问题初探[J]. 暖通空调, 2024, 54(2): 28-32.
    [4]
    张芮, 陈伟, 张紫禾, 等. 二氧化碳排放检测技术应用与拓展浅析[J]. 资源节约与环保, 2018(3): 99-101.
    [5]
    饶雨舟, 李越胜, 姚顺春, 等. 碳排放在线检测技术的研究进展[J]. 广东电力, 2015, 28(8): 1-8.
    [6]
    颜世平. CO2浓度实时检测方法及其实现研究[D]. 长沙: 湖南大学, 2013.
    [7]
    张宁, 张紫禾, 康磊, 等. 固定排放源CO2排放检测方法综述[J]. 中国环境管理干部学院学报, 2016, 26(6): 60-62,85.
    [8]
    MOHAMMADIAN E, HAMID H, ASADULLAH M, et al. Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method[J]. Journal of Chemical & Engineering Data, 2015, 60(7): 2042-2049.
    [9]
    WIEGRAN K, TRAPP T, CAMMANN K. Development of a dissolved carbon dioxide sensor based on a coulometric titration[J]. Sensors and Actuators B:Chemical, 1999, 57(1): 120-124.
    [10]
    XU C G, YU Y S, XIE W J, et al. Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption[J]. Applied Energy, 2019, 255: 113791. doi: 10.1016/j.apenergy.2019.113791
    [11]
    杨俊超, 潘勇, 秦墨林, 等. 金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(2): 10-18. doi: 10.3969/j.issn.1008-2298.2022.02.002
    [12]
    ZHANG C, XU K, LIU K, et al. Metal oxide resistive sensors for carbon dioxide detection[J]. Coordination Chemistry Reviews, 2022, 472: 214758. doi: 10.1016/j.ccr.2022.214758
    [13]
    徐春霞, 王光伟, 张鹏. 半导体电阻型CO2传感器研究进展[J]. 传感器与微系统, 2023, 42(10): 1-4.
    [14]
    KANAPARTHI S, SINGH S G. Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection[J]. ACS Applied Nano Materials, 2019, 2(2): 700-706. doi: 10.1021/acsanm.8b01763
    [15]
    MIAO F, WU H, TAO B, et al. A passive-chipless LC carbon dioxide sensor with non-contact ZnO/CuO/RGO nanocomposites at room temperature[J]. Vacuum, 2023, 215: 112261. doi: 10.1016/j.vacuum.2023.112261
    [16]
    KEERTHANA S, RATHNAKANNAN K. Room temperature operated carbon dioxide sensor based on silver doped zinc oxide/cupric oxide nanoflowers[J]. Sensors and Actuators B:Chemical, 2023, 378: 133-181.
    [17]
    KEERTHANA S, RATHNAKANNAN K. Hierarchical ZnO/CuO nanostructures for room temperature detection of carbon dioxide[J]. Journal of Alloys and Compounds, 2022, 897: 162988. doi: 10.1016/j.jallcom.2021.162988
    [18]
    HUNGE Y M, YADAV A A, KULKARNI S B, et al. A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications[J]. Sensors and Actuators B:Chemical, 2018, 274: 1-9.
    [19]
    中国气象科学研究院. 气相色谱法本底大气CO2和甲烷浓度在线观测方法: GB/T 31705-2015 [S]. 北京: 中国标准出版社, 2015.
    [20]
    王鹏. 地震孕育区CH4和CO2原位检测技术研究[D]. 长春: 吉林大学, 2023.
    [21]
    BAHAGHIGHAT H D, FREYE C E, SYNOVEC R E. Recent advances in modulator technology for comprehensive two dimensional gas chromatography[J]. TRAC Trends in Analytical Chemistry, 2019, 113: 379-391. doi: 10.1016/j.trac.2018.04.016
    [22]
    EKEBERG D, OGNER G, FONGEN M, et al. Determination of CH4, CO2 and N2O in air samples and soil atmosphere by gas chromatography mass spectrometry, GC-MS[J]. Journal of Environmental Monitoring, 2004, 6(7): 621-623. doi: 10.1039/B401315H
    [23]
    SECHMAN H, KOTARBA M J, KĘDZIOR S, et al. Distribution of methane and carbon dioxide concentrations in the near-surface zone over regional fault zones and their genetic characterization in the Pszczyna-Oświęcim area (SE part of the Upper Silesian Coal Basin, Poland)[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106804. doi: 10.1016/j.petrol.2019.106804
    [24]
    洪海祥, 臧昆鹏, 陈圆圆等. 三通道气相色谱法监测大气中CH4、CO、CO2、N2O和SF6[J]. 色谱, 2022, 40(8): 763-771.
    [25]
    金伟. ESI-RIT质谱仪和智能VOC_s检测仪中关键部件的研制[D]. 长春: 吉林大学, 2007.
    [26]
    国家市场监督管理总局等. 质谱分析方法通则: GB/T 6041-2020 [S]. 北京: 中国标准出版社, 2020: 03-31.
    [27]
    张体强, 胡树国, 吴海, 等. 电子级氮气中超痕量杂质的质谱分析方法及测量不确定度评估[J]. 质谱学报, 2017, 38(5): 574-583.
    [28]
    LIU W, ZHOU L, YUAN W, et al. Tracking indoor volatile organic compounds with online mass spectrometry[J]. TRAC Trends in Analytical Chemistry, 2024, 171: 117514. doi: 10.1016/j.trac.2023.117514
    [29]
    周枫然, 韩桥, 张体强, 等. 傅里叶变换红外光谱技术的应用及进展[J]. 化学试剂, 2021, 43(8): 1001-1009.
    [30]
    单昌功. 基于地基高分辨率傅里叶变换红外光谱技术研究大气CO2时空分布和变化特征[D]. 合肥: 中国科学技术大学, 2019.
    [31]
    中国计量科学研究院. 傅立叶变换红外光谱仪校准规范JJF 1319-2011 [S]. 北京: 中国标准出版社, 2011.
    [32]
    单昌功, 王薇, 刘诚, 等. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值[J]. 物理学报, 2017, 66(22): 149-157.
    [33]
    李相贤, 徐亮, 高闽光, 等. 分析温室气体及CO2碳同位素比值的傅里叶变换红外光谱仪[J]. 光学精密工程, 2014, 22(9): 2359-2368.
    [34]
    中国环境监测总站. 固定污染源废气 CO2的测定非分散红外吸收法[EB/OL]. [2024-02-26].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201712/W020171207498942245327.pdf.
    [35]
    逯又豪, 杨帆, 张溪, 等. 基于传感器的CO2检测仪在水库CO2通量检测中的应用[J]. 环境工程, 2023, 41(10): 45-50,68.
    [36]
    XU M, PENG B, ZHU X, et al. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology[J]. Sensors, 2022, 22(3): 836. doi: 10.3390/s22030836
    [37]
    TIAN F chao, LIANG Y TAO, ZHU H qing, et al Application of a novel detection approach based on non-dispersive infrared theory to the in-situ analysis on indicator gases from underground coal fire[J]. Journal of Central South University, 2022, 29(6): 1840-1855.
    [38]
    XU M, XU Y, TAO J, et al. Development of a compact NDIR CO2 gas sensor for harsh environments[J]. Infrared Physics & Technology, 2024, 136: 105035.
    [39]
    KOSSE P, KLEEBERG T, LÜBKEN M, et al. Quantifying direct carbon dioxide emissions from wastewater treatment units by nondispersive infrared sensor (NDIR)-A pilot study[J]. Science of The Total Environment, 2018, 633: 140-144. doi: 10.1016/j.scitotenv.2018.03.174
    [40]
    ROLLE F, SEGA M. Carbon dioxide determination in atmosphere by non-dispersive infrared spectroscopy: A possible approach towards the comparability with seawater CO2 measurement results[J]. Measurement, 2018, 128: 479-484. doi: 10.1016/j.measurement.2018.07.007
    [41]
    SUN Q, LIU T, HUANG M. High accuracy wide range CO2 detection method based on difference optical path NDIR[J]. Sensors and Actuators A:Physical, 2023, 363: 114722. doi: 10.1016/j.sna.2023.114722
    [42]
    TAN Q, TANG L, YANG M, et al. Three-gas detection system with IR optical sensor based on NDIR technology[J]. Optics and Lasers in Engineering, 2015, 74: 103-108.
    [43]
    中华人民共和国国家质量监督检验检疫总局等. 温室气体 二氧化碳测量 离轴积分腔输出光谱法: GB/T34286-2017[S]. 北京: 中国标准出版社, 2017: 09-07.
    [44]
    B. P. JOSUA , L. LARRY, G. A. JAMES. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 2001, 40(27): 4904-4910.
    [45]
    ZHENG K, ZHENG C, ZHANG H, et al. Near-Infrared Off-Axis Integrated Cavity Output Spectroscopic Gas Sensor for Real-Time, In Situ Atmospheric Methane Monitoring[J]. IEEE Sensors Journal, 2021, 21(5): 6830-6838. doi: 10.1109/JSEN.2020.3042697
    [46]
    王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.
    [47]
    LAI R, HE C, LI X, et al. Trace methane gas detection by wavelength modulated off-axis integrated cavity output spectroscopy[J]. Journal of Modern Optics, 2019, 66(6): 581-589. doi: 10.1080/09500340.2018.1557752
    [48]
    中华人民共和国国家质量监督检验检疫总局等. 大气二氧化碳(CO2)光腔衰荡光谱观测系统: GB/T34415-2017 [S]. 北京: 中国标准出版社, 2017: 09-29.
    [49]
    宋绍漫, 颜昌翔. 基于光腔衰荡光谱技术的痕量甲烷检测[J]. 光谱学与光谱分析, 2020, 40(07): 2023-2028.
    [50]
    FILGES A, GERBIG C, CHEN H, et al. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO[J]. Tellus B:Chemical and Physical Meteorology, 2015, 67(1): 27989. doi: 10.3402/tellusb.v67.27989
    [51]
    BRANDILY C, LECUFF N, DONVAL J P, et al. A GC-SSIM-CRDS system: Coupling a gas chromatograph with a Cavity Ring-Down Spectrometer for onboard Twofold analysis of molecular and isotopic compositions of natural gases during ocean-going research expeditions[J]. Analytica Chimica Acta, 2021, 1184: 339040. doi: 10.1016/j.aca.2021.339040
    [52]
    孙超越. 基于TDLAS技术的CO2浓度表征方法研究[D]. 西安: 西安理工大学, 2022.
    [53]
    XIN F, LI J, GUO J, et al. Measurement of Atmospheric CO2 Column Concentrations Based on Open-Path TDLAS[J]. Sensors (Basel, Switzerland), 2021, 21(5): 1722. doi: 10.3390/s21051722
    [54]
    刘海芹, 徐睿, 王振翔, 等. 基于TDLAS的近红外甲烷高灵敏检测技术[J]. 光子学报, 2024, 53(3): 250-257.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (262) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return