Turn off MathJax
Article Contents
ZHANG Qingyan, LI Jianshuang, MIAO Dongjing. Laser Multilateration Coordinate Measurement Systems and Development Status:A Review[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0100
Citation: ZHANG Qingyan, LI Jianshuang, MIAO Dongjing. Laser Multilateration Coordinate Measurement Systems and Development Status:A Review[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0100

Laser Multilateration Coordinate Measurement Systems and Development Status:A Review

doi: 10.12338/j.issn.2096-9015.2024.0100
  • Received Date: 2024-03-24
  • Accepted Date: 2024-04-07
  • Rev Recd Date: 2024-04-11
  • Available Online: 2024-04-23
  • The laser multilateral coordinate measuring system has the characteristics of high coordinate measurement accuracy, which has attracted much attention from academic circles, industries and metrology institutions in various countries. However, since the accuracy of coordinate measurement in large spatial ranges is affected by various factors, and there is a lack of domestic standards related to the measurement and calibration of laser multilateral coordinate measurement systems, the development of laser multilateral coordinate measurement systems still faces many problems that need to be solved. This article focuses on the principle of laser multilateral measurement, system parameter self-calibration method, coordinate measurement traceability status and the formulation of related standards, measurement uncertainty assessment and analysis of influencing factors, the extension of laser multilateral coordinate measurement in the field of attitude measurement, and the application in the industrial field at home and abroad Extensive research and summary have been conducted on its practical applications. Among them, domestic and foreign researchers have made a variety of attempts to improve measurement accuracy, such as compensating environmental field interference, reducing ranging errors, improving system self-calibration accuracy, increasing the number of measurement stations, setting constraints, and researching the optimal layout of the system. At the same time, the establishment and improvement of relevant standards for domestic laser polygonal coordinate measurement system measurement, calibration and traceability can provide reference and basis for the manufacturing and assembly of large parts and components in industrial applications and the calibration and compensation of instruments. This article reviews the relevant literature on laser multilateral coordinate measurement systems in the field of large spatial range measurement, focusing on the principles of laser multilateral coordinate measurement, system parameter self-calibration methods, coordinate measurement uncertainty and applications, aiming to provide researchers with information on The development status and future development trends of laser multilateral coordinate measurement systems promote the development of coordinate measurement technology in large spatial ranges.
  • loading
  • [1]
    赵欢, 葛东升, 罗来臻, 等. 大型构件自动化柔性对接装配技术综述[J]. 机械工程学报, 2023, 59(14): 277-297.
    [2]
    邹冀华, 刘志存, 范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机集成制造系统, 2007(7): 1367-1373.
    [3]
    吴晓峰, 张国雄. 现代大尺寸空间测量方法[J]. 航空制造技术, 2006(10): 68-70.
    [4]
    杜福洲, 文科. 大尺寸精密测量技术及其应用[J]. 航空制造技术, 2016(11): 16-24.
    [5]
    LAU K, HOCKEN R, HAYNES L. Robot performance measurements using automatic laser tracking techniques[J]. Robotics and computer-integrated manufacturing, 1985, 2(3-4): 227-236. doi: 10.1016/0736-5845(85)90110-3
    [6]
    AGUADO S, SANTOLARIA J, SAMPER D, et al. Influence of measurement noise and laser arrangement on measurement uncertainty of laser tracker multilateration in machine tool volumetric verification[J]. Precis Eng, 2013, 37(4): 929-943. doi: 10.1016/j.precisioneng.2013.03.006
    [7]
    ZHUANG H, LI B, ROTH Z S, et al. Self-calibration and mirror center offset elimination of a multi-beam laser tracking system[J]. Robotics and autonomous systems, 1992, 9(4): 255-269. doi: 10.1016/0921-8890(92)90042-W
    [8]
    吴斌, 许友, 杨峰亭, 等. 激光跟踪绝对测长多边法三维坐标测量系统[J]. 红外与激光工程, 2018, 47(8): 140-145.
    [9]
    张国雄, 李杏华, 林永兵. 多路法激光跟踪干涉测量系统的研究[J]. 天津大学学报, 2003(1): 23-27.
    [10]
    孙旭东, 张国雄, 付继有. 多路激光跟踪干涉柔性坐标测量系统三自由度坐标测量方法的研究[J]. 电子测量与仪器学报, 2000(1): 22-25,36.
    [11]
    林永兵, 张国雄, 李真, 等. 多路激光跟踪干涉三维坐标测量系统冗余技术[J]. 计量学报, 2003(1): 1-5.
    [12]
    付继有, 丁耀, 张国雄. 多路激光跟踪干涉仪坐标测量系统的容错设计[J]. 航空计测技术, 1997(6): 3-4,16.
    [13]
    林永兵, 张国雄, 李真, 等. 四路激光跟踪干涉三维坐标测量系统自标定与仿真[J]. 仪器仪表学报, 2003(2): 205-210.
    [14]
    TAKATSUJI T, GOTO M, KUROSAWA T, et al. The first measurement of a three-dimensional coordinate by use of a laser tracking interferometer system based on trilateration[J]. Measurement Science and Technology, 1998, 9(1): 38-41. doi: 10.1088/0957-0233/9/1/006
    [15]
    ZHUANG H, MOTAGHEDI S H, ROTH Z S, et al. Calibration of multi-beam laser tracking systems[J]. Robotics and Computer-Integrated Manufacturing, 2003, 19(4): 301-314. doi: 10.1016/S0736-5845(02)00076-5
    [16]
    ZHANG F M, ZHANG H D, QU X H. A multilateral laser-tracking three-dimensional coordinate measuring system based on plane constraint[J]. Measurement Science and Technology, 2020, 31(1): 1-7.
    [17]
    何俊. 基于距离约束的多边激光三维坐标测量系统研究[D]. 天津: 天津大学, 2020.
    [18]
    胡进忠, 余晓芬, 刘媛媛. 基于激光多边法的坐标测量系统自标定研究[J]. 电子测量与仪器学报, 2014, 28(2): 130-137.
    [19]
    JIANG R, ZHOU S, YANG Q, et al. Mutual collimation self-calibration for dual-comb ranging-based multilateral coordinate measurement[J]. Opt Lett, 2023, 48(16): 4213-4216. doi: 10.1364/OL.498716
    [20]
    GUILLORY J, TRUONG D, WALLERAND J-P. Uncertainty assessment of a prototype of multilateration coordinate measurement system[J]. Precision Engineering, 2020, 66: 496-506. doi: 10.1016/j.precisioneng.2020.08.002
    [21]
    GUILLORY J, TRUONG D, WALLERAND J-P. Multilateration with Self-Calibration: Uncertainty Assessment, Experimental Measurements and Monte-Carlo Simulations[J]. Metrology, 2022, 2(2): 241-262. doi: 10.3390/metrology2020015
    [22]
    GUILLORY J, TRUONG D, WALLERAND J-P, et al. An SI-traceable multilateration coordinate measurement system with half the uncertainty of a laser tracker[J]. Measurement Science and Technology, 2023, 34(6): 1-6.
    [23]
    RAFELD E K, KOPPERT N, FRANKE M, et al. Recent developments on an interferometric multilateration measurement system for large volume coordinate metrology[J]. Measurement Science and Technology, 2021, 33(3): 1-10.
    [24]
    林永兵, 张国雄, 李真, 等. 四路激光跟踪三维坐标测量系统最佳布局[J]. 中国激光, 2002(11): 1000-1005.
    [25]
    任瑜, 刘芳芳, 张丰, 等. 激光跟踪仪多边测量的不确定度评定[J]. 光学精密工程, 2018, 26(10): 2415-2422.
    [26]
    林永兵, 李杏华, 张国雄. 基于多边法的三维坐标测量系统自标定最优方案[J]. 计量学报, 2003(3): 166-173.
    [27]
    缪东晶, 孙威, 李建双, 等. 测站数量对多边法坐标测量系统测量精度的影响[J]. 仪器仪表学报, 2020, 41(7): 38-44.
    [28]
    TAKATSUJI T, KOSEKI Y, GOTO M, et al. Restriction on the arrangement of laser trackers in laser trilateration[J]. Measurement Science and Technology, 1998, 9(8): 1357-1359. doi: 10.1088/0957-0233/9/8/033
    [29]
    TAKATSUJI T, GOTO M, KIRITA A, et al. The relationship between the measurement error and the arrangement of laser trackers in laser trilateration[J]. Measurement Science and Technology, 2000, 11(5): 477-483. doi: 10.1088/0957-0233/11/5/305
    [30]
    胡朝晖, 王佳, 刘永东, 等. 纯距离法激光跟踪坐标测量系统的布局与仿真[J]. 光学技术, 2000(5): 395-399.
    [31]
    林永兵, 张国雄, 李真, 等. 四路激光跟踪测量系统最佳测量区域和系统自标定[J]. 中国激光, 2002(11): 1006-1010.
    [32]
    闫阳, 夏文杰, 林虎. 激光跟踪多边异步测量系统标定点布局研究[J]. 计量学报, 2023, 44(8): 1188-1195.
    [33]
    胡进忠, 余晓芬, 彭鹏, 等. 基于激光多边法的坐标测量系统布局优化[J]. 中国激光, 2014, 41(1): 185-190.
    [34]
    胡进忠, 余晓芬, 任兴, 等. 基于激光多边法的坐标测量系统最佳布局[J]. 中国激光, 2014, 41(7): 183-189.
    [35]
    李笑宇, 林虎, 薛梓, 等. 激光跟踪多边测量自标定优化方法[J]. 仪器仪表学报, 2021, 42(2): 10-17.
    [36]
    WANG H, CAI Y, LI T, et al. Application of genetic algorithm to multilateration measurement of the volumetric error in machine tools[J]. Advances in Mechanical Engineering, 2016, 8(9): 8.
    [37]
    SHENG Y, WANG Y, LIU S, et al. Large-Scale Measurement Layout Optimization Method Based on Laser Multilateration[J]. Machines, 2022, 10(11): 22.
    [38]
    梁楚彦, 缪东晶, 李建双, 等. 多边法坐标测量系统关键布局参数对测量精度影响的研究[J]. 计量学报, 2023, 44(7): 1009-1018.
    [39]
    谢政委, 林嘉睿, 邾继贵, 等. 基于空间长度约束的坐标控制场精度增强方法[J]. 中国激光, 2015, 42(1): 261-267.
    [40]
    郑继辉, 缪东晶, 李建双, 等. 采用标准长度的激光多边法坐标测量系统自标定算法[J]. 计量学报, 2019, 40(1): 64-70.
    [41]
    LINARES J M, ARROYAVE-TOBON S, PIRES J, et al. Effects of number of digits in large-scale multilateration[J]. Precision Engineering, 2020, 64: 1-6. doi: 10.1016/j.precisioneng.2020.03.009
    [42]
    DENG R, SHI S, YANG L, et al. Dynamic measurement method based on temporal-spatial geometry constraint and optimized motion estimation[J]. Measurement, 2024, 227: 114269. doi: 10.1016/j.measurement.2024.114269
    [43]
    NITSCHE J, FRANKE M, HAVERKAMP N, et al. Six-degree-of-freedom pose estimation with µm/µrad accuracy based on laser multilateration[J]. Journal of Sensors and Sensor Systems, 2021, 10(1): 19-24. doi: 10.5194/jsss-10-19-2021
    [44]
    缪东晶, 李建双, 郑继辉, 等. 基于多边法的大尺寸位姿测量系统的自标定算法与仿真研究[J]. 计量学报, 2017, 38(S1): 70-75.
    [45]
    张帅, 缪东晶, 李建双, 等. 多边法位姿测量系统中跟踪方式对测量精度的影响[J]. 计量学报, 2020, 41(9): 1055-1061.
    [46]
    WANG J, GUO J, ZHANG G, et al. The technical method of geometric error measurement for multi-axis NC machine tool by laser tracker[J]. Measurement Science and Technology, 2012, 23(4): 10.
    [47]
    EZEDINE F, LINARES J-M, SPRAUEL J-M, et al. Smart sequential multilateration measurement strategy for volumetric error compensation of an extra-small machine tool[J]. Precision Engineering, 2016, 43: 178-186. doi: 10.1016/j.precisioneng.2015.07.007
    [48]
    EZEDINE F, LINARES J-M, CHAVES-JACOB J, et al. Measurement Parameters Optimized for Sequential Multilateration in Calibrating a Machine Tool with a DOE Method[J]. Applied Sciences, 2016, 6(11): 313. doi: 10.3390/app6110313
    [49]
    ZHANG Z J, REN M J, LIU M J, et al. A Modified Sequential Multilateration Scheme and its Application in Geometric Error Measurement of Rotary Axis[J]. Procedia CIRP, 2015, 27: 313-317. doi: 10.1016/j.procir.2015.04.085
    [50]
    LIU X B, XIA Y Q, RUI X T. Uncertainty evaluation of multilateration-based geometric error measurement considering the repeatibility of positioning of the machine tool[J]. Metrology and Measurement Systems, 2023, 30(1): 49-63.
    [51]
    HSU C-H, CHEN J-R, HSU F-H, et al. A Novel Measurement Method for Determining Geometric Errors of Rotary Tables by Using LaserTRACER and Reflectors[J]. Applied Sciences, 2023, 13(4): 8.
    [52]
    GOMEZ-ACEDO E, OLARRA A, ZUBIETA M, et al. Method for measuring thermal distortion in large machine tools by means of laser multilateration[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(1-4): 523-534. doi: 10.1007/s00170-015-7000-y
    [53]
    LINARES J-M, CHAVES-JACOB J, SCHWENKE H, et al. Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer[J]. Precision Engineering, 2014, 38(3): 578-588. doi: 10.1016/j.precisioneng.2014.02.008
    [54]
    NORMAN J, GIUSCA C, TONNELLIER X. Assessment of a laser-based multilateration system for measurement of low-slope metre-scale surfaces [C]. Proceedings of the Proceedings of the 2016 International Conference on Laser Metrology and Machine Performance, 2016.
    [55]
    陈佳夷, 王聪, 霍腾飞, 等. 激光跟踪仪检测大口径非球面方法研究[J]. 应用光学, 2021, 42(2): 299-303.
    [56]
    王子辰, 张爱梅. 面向特大齿轮的激光跟踪测量精度提升方法[J]. 红外与激光工程, 2021, 50(11): 186-193.
    [57]
    TANG X, XU K, BI Q, et al. Improved closed-loop tracking interferometer measurement for a five-axis machine tool with a bi-rotary milling head[J]. Science China Technological Sciences, 2022, 65(5): 1127-1136. doi: 10.1007/s11431-021-2001-7
    [58]
    IBARAKI S, KUDO T, YANO T, et al. Estimation of three-dimensional volumetric errors of machining centers by a tracking interferometer[J]. Precision Engineering, 2015, 39: 179-186. doi: 10.1016/j.precisioneng.2014.08.007
    [59]
    CONG H, ZHA J, LI L, et al. Accuracy evaluation of geometric error calibration using a laser tracer via a formulaic approach[J]. Measurement Science and Technology, 2020, 32(2): 32.
    [60]
    BOSEMANN W, DAUKE M. Inspection of large CMMs by sequential multilateration using a single laser tracker[J]. WIT Transactions on Engineering Sciences, 2003, 1: 44.
    [61]
    UMETSU K, FURUTNANI R, OSAWA S, et al. Geometric calibration of a coordinate measuring machine using a laser tracking system [J]. Measurement Science and Technology, 2005, 16(12): 2466: 2472.
    [62]
    MOUSTAFA S, GERWIEN N, HAERTIG F, et al. Comparison of error mapping techniques for coordinate measuring machines using the plate method and laser tracer technique [C]. Proceedings of the XIX IMEKO World Congress: Fundamental and Applied Metrology, 2009.
    [63]
    WENDT K, FRANKE M, HäRTIG F. Measuring large 3D structures using four portable tracking laser interferometers[J]. Measurement, 2012, 45(10): 2339-2345. doi: 10.1016/j.measurement.2011.09.020
    [64]
    SANTOLARIA J, MAJARENA A C, SAMPER D, et al. Articulated arm coordinate measuring machine calibration by laser tracker multilateration[J]. ScientificWorldJournal, 2014, 2014: 681853.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (74) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return