Citation: | DING Chaomin, LI Ke, YAN Yong, WANG Defa, XIAO Zhe, LIU Fan, ZHANG Xin, LI Qi, GUO Xiaoyan, ZHANG Zhengdong. Research Progress on Different Catalytic Techniques for Carbon Dioxide Reduction Reaction[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0201 |
[1] |
周枫然, 舒慧, 杨扬仲夫, 等. 应对双碳目标的降碳与计量技术研究进展[J]. 计量科学与技术, 2023, 67(9): 15-24.
|
[2] |
TU W, ZHOU Y, ZOU Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects[J]. Adv. Mater., 2014, 26(27): 4607-4626. doi: 10.1002/adma.201400087
|
[3] |
BADDOUR F G, ROBERTS E J, TO A T, et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation[J]. J. Am. Chem. Soc., 2020, 142(2): 1010-1019. doi: 10.1021/jacs.9b11238
|
[4] |
LI J, GAO X, ZHU L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy Environ. Sci., 2020, 13(5): 1326-1346. doi: 10.1039/C9EE03558C
|
[5] |
GONG F, LI Y. Fixing carbon, unnaturally[J]. science, 2016, 354(6314): 830-831. doi: 10.1126/science.aal1559
|
[6] |
LI Z, HAN B, BAI W C, et al. Photocatalytic CO2RR for gas fuel production: Opportunities and challenges[J]. Sep. Purif. Technol. , 2023: 124528.
|
[7] |
郭得通, 丁红蕾, 潘卫国, 等. CO2催化转化的研究现状及趋势[J]. 中国电机工程学报, 2019, 39(24): 7242-7252,7497.
|
[8] |
SUBRAHMANYAM M, KANECO S, ALONSO-VANTE N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity[J]. Appl. Catal. , B, 1999, 23(2-3): 169-174. doi: 10.1016/S0926-3373(99)00079-X
|
[9] |
SASIREKHA N, BASHA S J S, SHANTHI K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide[J]. Appl. Catal. , B, 2006, 62(1-2): 169-180. doi: 10.1016/j.apcatb.2005.07.009
|
[10] |
SHKROB I A, MARIN T W, HE H, et al. Photoredox reactions and the catalytic cycle for carbon dioxide fixation and methanogenesis on metal oxides[J]. J. Phys. Chem. C, 2012, 116(17): 9450-9460. doi: 10.1021/jp300122v
|
[11] |
INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. doi: 10.1038/277637a0
|
[12] |
HSU H C, SHOWN I, WEI H Y, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion[J]. Nanoscale, 2013, 5(1): 262-268. doi: 10.1039/C2NR31718D
|
[13] |
SHOWN I, HSU H C, CHANG Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide[J]. Nano Lett., 2014, 14(11): 6097-6103. doi: 10.1021/nl503609v
|
[14] |
LI K K, ZHANG Y T, JIA J, et al. 2D/2D Carbon Nitride/Zn-Doped Bismuth Vanadium Oxide S-Scheme Heterojunction for Enhancing Photocatalytic CO2 Reduction into Methanol[J]. Ind. Eng. Chem. Res., 2023, 62(13): 5552-5562. doi: 10.1021/acs.iecr.2c03536
|
[15] |
MA M Z, HUANG Z A, WANG R, et al. Targeted H2O activation to manipulate the selective photocatalytic reduction of CO2 to CH3OH over carbon nitride-supported cobalt sulfide[J]. Green Chem., 2022, 24(22): 8791-8799. doi: 10.1039/D2GC03226K
|
[16] |
FENG X, SLOPPY J D, LATEMPA T J, et al. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide[J]. J. Mater. Chem., 2011, 21(35): 13429-13433. doi: 10.1039/c1jm12717a
|
[17] |
FENG S, ZHAO J, BAI Y, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. J. CO2 Util., 2020, 38: 1-9. doi: 10.1016/j.jcou.2019.12.019
|
[18] |
ZHANG J, XU J, TAO F. Interface modification of TiO2 nanotubes by biomass-derived carbon quantum dots for enhanced photocatalytic reduction of CO2[J]. ACS Appl. Energy Mater., 2021, 4(11): 13120-13131. doi: 10.1021/acsaem.1c02760
|
[19] |
BAN C G, WANG Y, FENG Y J, et al. Photochromic single atom Ag/TiO2 catalysts for selective CO2 reduction to CH4[J]. Energy Environ. Sci., 2024, 17(2): 518-530. doi: 10.1039/D3EE02800C
|
[20] |
WANG P, YANG F, QU J, et al. Recent advances and challenges in efficient selective photocatalytic CO2 methanation[J]. Small, 2024: 2400700.
|
[21] |
ZHANG W, HU Y, MA L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Adv. Sci., 2018, 5(1): 1700275. doi: 10.1002/advs.201700275
|
[22] |
KUHL K P, CAVE E R, ABRAM D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy Environ. Sci., 2012, 5(5): 7050-7059. doi: 10.1039/c2ee21234j
|
[23] |
董鹤楠, 戈阳阳, 魏新颖, 等. 碳布负载高致密Sn/SnBi合金的电催化CO2还原性能[J]. 无机化学学报, 2022, 38(12): 2433-2442.
|
[24] |
ZHANG S, KANG P, UBNOSKE S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. J. Am. Chem. Soc., 2014, 136(22): 7845-7848. doi: 10.1021/ja5031529
|
[25] |
CHENG Y, HOU J, KANG P. Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles[J]. ACS Energy Lett., 2021, 6(9): 3352-3358. doi: 10.1021/acsenergylett.1c01553
|
[26] |
YANG F, JIANG C, MA M, et al. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid[J]. Chem. Eng. J, 2020, 400: 125879. doi: 10.1016/j.cej.2020.125879
|
[27] |
GARCíA DE ARQUER F P, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activities greater than 1A cm−2[J]. science, 2020, 367(6478): 661-666. doi: 10.1126/science.aay4217
|
[28] |
CHEN X, CHEN J, ALGHORAIBI N M, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes[J]. Nat. Catal., 2021, 4(1): 20-27.
|
[29] |
LI Y C, WANG Z, YUAN T, et al. Binding site diversity promotes CO2 electroreduction to ethanol[J]. J. Am. Chem. Soc., 2019, 141(21): 8584-8591. doi: 10.1021/jacs.9b02945
|
[30] |
WANG Y X, WEI Y Y, LI Y H, et al. Highly Selective Conversion of Carbon Dioxide to Methanol through a Cu-ZnO-Al2O3-ZrO2/Cu-MOR Tandem Catalyst[J]. Chemcatchem, 2023, 15(17): e202300662. doi: 10.1002/cctc.202300662
|
[31] |
MANRIQUE R, JIMéNEZ R, RODRíGUEZ-PEREIRA J, et al. Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd[J]. Int. J. Hydrogen Energy, 2019, 44(31): 16526-16536. doi: 10.1016/j.ijhydene.2019.04.206
|
[32] |
WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci. Adv., 2017, 3(10): e1701290. doi: 10.1126/sciadv.1701290
|
[33] |
王兆宇, 陈益宾, 程锦添, 等. Ni-Co/TiO2增强CO2加氢反应性能的研究[J]. 高等学校化学学报, 2023, 44(11): 163-171.
|
[34] |
赵传文, 黄浦, 郭亚飞. 二氧化碳捕集-加氢转化一体化技术研究进展与展望[J]. 洁净煤技术, 2024, 30(4): 1-20.
|
[35] |
LV Z, RUAN J, TU W, et al. Integrated CO2 capture and In-Situ methanation by efficient dual functional Li4SiO4@ Ni/CeO2[J]. Sep. Purif. Technol., 2023, 309: 123044. doi: 10.1016/j.seppur.2022.123044
|
[36] |
YANG G C, ZHOU L, MBADINGA S M, et al. Bioconversion pathway of CO2 in the presence of ethanol by methanogenic enrichments from production water of a high-temperature petroleum reservoir[J]. Energies, 2019, 12(5): 918. doi: 10.3390/en12050918
|
[37] |
DAGLIOGLU S T, KARABEY B, OZDEMIR G, et al. CO2 utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples[J]. Environ. Technol., 2019, 40(6): 742-748. doi: 10.1080/09593330.2017.1406537
|