Citation: | LI Youqiang, WANG Jun, FAN Xu, HOU Likai. Advances in Fluid Viscosity Measurement Technologies[J]. Metrology Science and Technology, 2024, 68(12): 11-20, 82. DOI: 10.12338/j.issn.2096-9015.2024.0212 |
Viscosity is a critical property of fluids that quantifies their resistance to deformation. Selecting an appropriate viscosity measurement method is essential for industrial production and scientific research. With the increasing application of microfluidics in fields such as biomedicine, new energy, and advanced materials, innovative methods for microfluidic viscosity measurement have emerged. This paper reviews the current progress in fluid viscosity measurement technologies, categorizing them into traditional macroscopic fluid measurement methods and emerging microfluidic measurement methods. Traditional macroscopic methods, including rotational viscometers, oscillatory viscometers, falling ball viscometers, and ultrasonic viscometers, are analyzed in terms of their structures, measurement principles, advantages, disadvantages, and current developments. For microfluidic viscosity measurement, cutting-edge techniques such as micro-electro-mechanical system (MEMS)-based viscometers, optically based viscometers, droplet-based viscometers, and paper-based microfluidic viscometers are introduced and evaluated regarding structural characteristics, measurement accuracy, and principles. Comparisons are made between traditional and microfluidic viscometers to highlight their unique strengths. The findings indicate that while traditional viscometers remain the primary choice for large-scale industrial applications, microfluidic viscometers are gaining attention due to their advantages, such as minimal sample requirements, high efficiency, low cost, and compact size. This review provides a comprehensive reference for researchers and practitioners to select the most suitable viscosity measurement technique for specific applications.
[1] |
Stratiev D, Shishkova I, Dinkov R, et al. Prediction of petroleum viscosity from molecular weight and density[J]. Fuel, 2023, 331: 125679. DOI: 10.1016/j.fuel.2022.125679
|
[2] |
Gabsi K, Trigui M, Barrington S, et al. Evaluation of rheological properties of date syrup[J]. Journal of Food Engineering, 2013, 117(1): 165-172. DOI: 10.1016/j.jfoodeng.2013.02.017
|
[3] |
Alexy T. Physical properties of blood and their relationship to clinical conditions[J]. Frontiers in Physiology. 2022, 13: 1-10.
|
[4] |
Zhu L, Lin W. Constructing a NIR fluorescent probe for ratiometric imaging viscosity in mice and detecting blood viscosity in folliculitis mice and peritonitis mice[J]. Sensors and Actuators B: Chemical, 2022, 352: 131042. DOI: 10.1016/j.snb.2021.131042
|
[5] |
Goutham R, Rohit P, Vigneshwar S S, et al. Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives[J]. Journal of Molecular Liquids, 2022, 349: 118150. DOI: 10.1016/j.molliq.2021.118150
|
[6] |
Cabrera S M, Winnubst L, Richter H, et al. Performance evaluation of an industrial ceramic nanofiltration unit for wastewater treatment in oil production[J]. Water Research, 2022, 220: 118593. DOI: 10.1016/j.watres.2022.118593
|
[7] |
张健, 赵雄虎, 皮家安, 等. 粘度的测量方法及进展[J]. 中国仪器仪表, 2018(4): 81-86. DOI: 10.3969/j.issn.1005-2852.2018.04.019
|
[8] |
CHENG J, GROBNER J, HORT N, et al. Measurement and calculation of the viscosity of metals—a review of the current status and developing trends[J]. Measurement Science & Technology, 2014, 25(6): 11260-11276.
|
[9] |
郁黄华, 庄豫玺, 顾申申. 基于阿里云的粘度计远程测控系统设计[J]. 工业控制计算机, 2022, 35(5): 46-8,72. DOI: 10.3969/j.issn.1001-182X.2022.05.018
|
[10] |
MCKENNELL R. Cone-Plate Viscometer[J]. Analytical Chemistry, 1956, 28(11): 1710-1714. DOI: 10.1021/ac60119a021
|
[11] |
Walters K, Jones W M. Measurement of viscosity[M]. 3rd ed. USA: Butterworth-Heinemann, 2003: 45-52.
|
[12] |
MEGALINGAM A, AHMAD A H B, MAAROF M R B, et al. Viscosity measurements in semi-solid metal processing: current status and recent developments[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 1435-1459.
|
[13] |
GHANBARI A, MOUSAVI Z, HEUZEY M-C, et al. Experimental methods in chemical engineering: Rheometry[J]. The Canadian Journal of Chemical Engineering, 2020, 98(7): 1456-1470. DOI: 10.1002/cjce.23749
|
[14] |
RENUKA A, MUTHTAMILSELVAN M, DOH D-H, et al. Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method[J]. Mathematics and Computers in Simulation, 2020, 171: 152-169. DOI: 10.1016/j.matcom.2019.05.008
|
[15] |
CHEVREL M O, LATCHIMY T, BATIER L, et al. A new portable field rotational viscometer for high-temperature melts[J]. Review of Scientific Instruments, 2023, 94(10): 105116. DOI: 10.1063/5.0160247
|
[16] |
DINSDALE A T, QUESTED P N. The viscosity of aluminium and its alloys--A review of data and models [J]. Journal of Materials Science, 2004, 39(24): 7221-7228.
|
[17] |
PATOUILLET K, DELACROIX J. Development of an oscillating cup viscometer for viscosity measurement of liquid metals at very high temperatures[J]. Measurement, 2023, 220: 113370. DOI: 10.1016/j.measurement.2023.113370
|
[18] |
KEHR M, HOYER W, EGRY I. A New High-Temperature Oscillating Cup Viscometer[J]. International Journal of Thermophysics, 2007, 28(3): 1017-1025. DOI: 10.1007/s10765-007-0216-9
|
[19] |
SHAMURATOV J, MUSTAFAYEV O, KADIROV I. New Viscometers for Measuring the Viscosity of Liquids[J]. Journal of Engineering, 2024, 2024(1): 6877306.
|
[20] |
SHVIDKOVSKIY Y G. Certain problems related to the viscosity of fused metals [M]. Washington: National Aeronautics and Space Administration, 1962.
|
[21] |
ROSCOE R. Viscosity Determination by the Oscillating Vessel Method I: Theoretical Considerations[J]. Proceedings of the Physical Society, 1958, 72(4): 576. DOI: 10.1088/0370-1328/72/4/312
|
[22] |
KESTIN J, NEWELL G F. Theory of oscillation type viscometers: The oscillating cup: Part I[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1957, 8(6): 433-449.
|
[23] |
KNAPPWOST A. Ein neues Verfahren zur Hochtemperaturviskosimetrie nach der Methode des schwingenden Hohlkörpers[J]. Zeitschrift für Physikalische Chemie, 1952, 200(1): 81-89.
|
[24] |
MIRGORODSKAYA A. The history of the development of the capillary method for measuring kinematic viscosity: from the Lomonosov viscometer to the information-measuring system[J]. Measurement Techniques, 2023, 66(8): 610-618. DOI: 10.1007/s11018-023-02273-y
|
[25] |
张正东. JJG155-2016《工作毛细管黏度计检定规程》 解读[J]. 中国计量, 2017(3): 128-130.
|
[26] |
金愿, 胡央丽, 朱绚华. 工作毛细管黏度计全国量值比对及结果分析[J]. 上海计量测试, 2024, 51(2): 49-53. DOI: 10.3969/j.issn.1673-2235.2024.02.016
|
[27] |
袁晓丽. 毛细管黏度计检定过程中影响因素的分析[J]. 中文科技期刊数据库(全文版)自然科学, 2024(5): 0052-0055.
|
[28] |
HADI H S, AISYAH P Y, FITRIYANAH D N, et al. Fluid Viscosity Measurement With Capillary Pipe Based On Internet Of Things (IoT); Proceedings of the 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), December 8-9, 2021[C]. Surabya: Institute of Electrical and Electronics Engineers Inc, 2021: 66-72.
|
[29] |
HARANGUS K, KAKUCS A. Mass-Measurement-based Automatization of the Engler-Viscometer[J]. Acta Polytechnica Hungarica, 2021, 18(5): 77-92. DOI: 10.12700/APH.18.5.2021.5.6
|
[30] |
高桂丽, 李大勇, 石德全. 液体粘度测定方法及装置研究现状与发展趋势简述[J]. 化工自动化及仪表, 2006, 33(2): 65-70. DOI: 10.3969/j.issn.1000-3932.2006.02.018
|
[31] |
赵北君, 朱世富, 李正辉, 等. 光电落球粘度计的研制[J]. 四川大学学报: 自然科学版, 1994, 31(2): 280-282.
|
[32] |
DARIDON J-L, BAZILE J-P, GALLIERO G. Advances in Falling-Cylinder Viscometry: A Comprehensive Review[J]. International Journal of Thermophysics, 2024, 45(5): 1-47.
|
[33] |
HARRIS K R. A Falling Body High-Pressure Viscometer[J]. International Journal of Thermophysics, 2023, 44(12): 184. DOI: 10.1007/s10765-023-03285-0
|
[34] |
ALI S H, AL-ZUKY A A D, AL-SALEH A H, et al. Measure liquid viscosity by tracking falling ball Automatically depending on image processing algorithm[J]. Journal of Physics: Conference Series, 2019: 022002.
|
[35] |
GITIS M, CHUPRIN V. Application of surface and normal ultrasonic waves for measuring the parameters of technical fluids: I. Shear viscosity measurements[J]. Technical physics, 2012, 57(5): 671-676. DOI: 10.1134/S1063784212050106
|
[36] |
MASTROMARINO S, ROOK R, DE HAAS D, et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids[J]. Measurement Science and Technology, 2021, 32(12): 125305. DOI: 10.1088/1361-6501/ac200f
|
[37] |
PUNEETH S, KULKARNI M B, GOEL S. Microfluidic viscometers for biochemical and biomedical applications: A review[J]. Engineering Research Express, 2021, 3(2): 022003. DOI: 10.1088/2631-8695/abfd47
|
[38] |
黄琳雅, 赵立波, 罗国希, 等. 基于微机械电子技术的黏度测量传感器[J]. 机械工程学报, 2021, 57(8): 13-22.
|
[39] |
ODEN PI. Viscosity measuring using microcantilevers: US 6, 269, 685 B1[P]. 2001-08-07.
|
[40] |
ODEN PI, CHEN GY, STEELE R, et al. Viscous drag measurements utilizing microfabricated cantilevers[J]. Applied physics letters, 1996, 68(26): 3814-3816. DOI: 10.1063/1.116626
|
[41] |
ETCHART I, CHEN H, DRYDEN P, et al. MEMS sensors for density–viscosity sensing in a low-flow microfluidic environment[J]. Sensors and Actuators A: Physical, 2008, 141(2): 266-275. DOI: 10.1016/j.sna.2007.08.007
|
[42] |
HU Y, ZHAO L, WANG T, et al. The fluid viscosity measurement based on variable cross-section MEMS cantilever under torsional excitation; proceedings of the 2015 IEEE SENSORS, F, 2015 [C]. IEEE.
|
[43] |
ZHAO L, HU Y, WANG T, et al. A MEMS resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes[J]. Sensors, 2016, 16(6): 830. DOI: 10.3390/s16060830
|
[44] |
GONZALEZ M, SEREN H R, HAM G, et al. Viscosity and density measurements using mechanical oscillators in oil and gas applications[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 67(4): 804-810.
|
[45] |
ZHANG Y, WU X, WANG Y, et al. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system[J]. Laser physics, 2014, 24(6): 065601. DOI: 10.1088/1054-660X/24/6/065601
|
[46] |
TASSIERI M, GIUDICE F D, ROBERTSON E J, et al. Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’[J]. Scientific reports, 2015, 5(1): 8831. DOI: 10.1038/srep08831
|
[47] |
CHEN W-Y, HUNG C-J, LIU C-Y. Microscopic Blood Viscosity Measurement using Optical Fiber Tweezers Imaging System; proceedings of the 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), F, 2023 [C]. IEEE.
|
[48] |
STATSENKO A, INAMI W, KAWATA Y. Measurement of viscosity of liquids using optical tweezers[J]. Optics Communications, 2017, 402: 9-13. DOI: 10.1016/j.optcom.2017.05.034
|
[49] |
杜林, 周嘉. 基于微流控原理的液体粘度测量方法研究[J]. 仪器仪表学报, 2018, 39(5): 188-194.
|
[50] |
ANDRé E, PANNACCI N, DALMAZZONE C, et al. A new way to measure viscosity in droplet-based microfluidics for high throughput analysis[J]. Soft Matter, 2019, 15(3): 504-514. DOI: 10.1039/C8SM02372G
|
[51] |
MENA S E, LI Y, MCCORMICK J, et al. A droplet-based microfluidic viscometer for the measurement of blood coagulation[J]. Biomicrofluidics, 2020, 14(1): 014109. DOI: 10.1063/1.5128255
|
[52] |
COCHARD-MARCHEWKA P, BREMOND N, BAUDRY J. Droplet-based microfluidic platform for viscosity measurement over extended concentration range[J]. Lab on a Chip, 2023, 23(9): 2276-2285. DOI: 10.1039/D3LC00073G
|
[53] |
MARTINEZ A W, PHILLIPS S T, BUTTE M J, et al. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays[J]. Angewandte Chemie, 2007, 119(8): 1340-1342. DOI: 10.1002/ange.200603817
|
[54] |
CATE D M, ADKINS J A, METTAKOONPITAK J, et al. Recent developments in paper-based microfluidic devices[J]. Analytical chemistry, 2015, 87(1): 19-41. DOI: 10.1021/ac503968p
|
[55] |
RAYAPROLU A, SRIVASTAVA S K, ANAND K, et al. Fabrication of cost-effective and efficient paper-based device for viscosity measurement[J]. Analytica Chimica Acta, 2018, 1044: 86-92. DOI: 10.1016/j.aca.2018.05.036
|
[56] |
PUNEETH S, GOEL S. Novel 3D printed microfluidic paper-based analytical device with integrated screen-printed electrodes for automated viscosity measurements[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 3196-3201. DOI: 10.1109/TED.2019.2913851
|
[57] |
JANG I, BERG K E, HENRY C S. Viscosity measurements utilizing a fast-flow microfluidic paper-based device[J]. Sensors and Actuators B: Chemical, 2020, 319: 128240. DOI: 10.1016/j.snb.2020.128240
|
[1] | SHI Yushu, WANG Kang, ZHANG Shihan, SHI Zhoumiao, YU Canjie, DENG Xiao, CHENG Xinbin, PI Lei, ZHANG Shu. Establishment of a Dual Traceability Chain Metrology Standard Device for Micro-Nano Displacement Positioning Calibration[J]. Metrology Science and Technology, 2025, 69(1): 3-10, 46. DOI: 10.12338/j.issn.2096-9015.2024.0274 |
[2] | WU Xiaojie, FANG Yan, QIU Yi, SHOU Xia, YING Haiyan, DONG Xuxin. Simulation and Experiments on Pipeline of Ultrasonic Water Meter for Small Diameter Application[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0324 |
[3] | FU Zhengwei, ZHAO Longhui, ZHANG Qi, YANG Shuiwang, JIANG Yuxuan, CHEN Xiaoting. Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film[J]. Metrology Science and Technology, 2024, 68(11): 34-41. DOI: 10.12338/j.issn.2096-9015.2024.0242 |
[4] | YAN Xu, ZHANG Guocheng, FENG Duan, SHEN Shangyi, YANG Zhenqi, DONG Mou, ZHAO Hongda, LIU Chenzhao. Application of GA-BP Model in Data Correction of Atmospheric Miniature[J]. Metrology Science and Technology, 2024, 68(1): 24-30. DOI: 10.12338/j.issn.2096-9015.2023.0341 |
[5] | ZHANG Kai, BAI Yang, ZHANG Zhimin. An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5[J]. Metrology Science and Technology, 2023, 67(7): 34-39, 33. DOI: 10.12338/j.issn.2096-9015.2023.0194 |
[6] | TIAN Jian. Key Technologies and Applications for the Green and Low-Carbon Advancement of Microgrids[J]. Metrology Science and Technology, 2023, 67(7): 25-33. DOI: 10.12338/j.issn.2096-9015.2023.0165 |
[7] | SONG Shugu, REN Xiaoqing, LIU Weiguang, GUO Shenhui, XIE Chen, ZHANG Zewu. Measurement Technique for Pulsatile Microflow Based on Poiseuille’s Law[J]. Metrology Science and Technology, 2023, 67(7): 11-17. DOI: 10.12338/j.issn.2096-9015.2023.0171 |
[8] | WANG Hongjun, YE Wen. Research on Micro Vibration Measurement and Analysis Method of Using[J]. Metrology Science and Technology, 2023, 67(6): 44-48. DOI: 10.12338/j.issn.2096-9015.2022.0227 |
[9] | FEI Yue, LI Jianxin, WANG Di, WANG Zhidong, WU Xiao, GAO Yunhua. A Review on the Advancements in Molecular Point-of-Care Tests[J]. Metrology Science and Technology, 2023, 67(5): 3-8. DOI: 10.12338/j.issn.2096-9015.2022.0280 |
[10] | JIN Yuan, ZOU Bingyan, ZHU Xuanhua. The Value Difference Between Viscosity Oil Standard and Viscosity Silicone Standard[J]. Metrology Science and Technology, 2021, 65(9): 26-30. DOI: 10.12338/j.issn.2096-9015.2020.0430 |
1. |
陈虎子,王增波,李孝莉. 工作毛细管黏度计检定注意事项及其常数检定结果的不确定度分析. 中国计量. 2025(01): 137-140 .
![]() |