Citation: | XIE Hui, LI Yanghai, XIONG Zhuo, WANG Pingping, ZHANG Junying, ZHAO Yongchun. Methodological Study of Carbon Emission Reduction for Coal Oxy-Fuel Combustion Power Generation Project[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0038 |
[1] |
Intergovernmental Panel on Climate Change. Climate Change 2023 Synthesis Report[R/OL]. IPCC, 2023. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf.
|
[2] |
World Health Organization. State of Climate in 2021: Extreme events and major impacts[R/OL]. WMO, 2021. https://public-old.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts.
|
[3] |
张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80.
|
[4] |
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 清华大学, 2023.
|
[5] |
Talieh R, Joris V, Yves M, et al. Carbon capture and utilization for industrial applications[J]. Energy Reports, 2023, 9: 111-116.
|
[6] |
Francisco C M, Reinhold S, Kristina F, et al. Oxy-fuel combustion technology for cement production-State of the art research and technology development[J]. International Journal of Greenhouse Gas Control, 2016, 45: 189-199. doi: 10.1016/j.ijggc.2015.12.014
|
[7] |
Thomas H, Duncan L, Nicholas F, et al. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting[J]. Environmental Science & Technology, 2016, 50: 368-377.
|
[8] |
Yusra K, May W, Armin S, et al. Oxygen enrichment combustion to reduce fossil energy consumption and emissions in hot rolling steel production[J]. Journal of Cleaner Production, 2021, 320: 128714. doi: 10.1016/j.jclepro.2021.128714
|
[9] |
Jose R S, Francisco J A, Luis M G, et al. Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system[J]. Energy, 2022, 255: 124419. doi: 10.1016/j.energy.2022.124419
|
[10] |
B J P B, L K E, C D S, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science, 2005, 31(4): 283-307. doi: 10.1016/j.pecs.2005.07.001
|
[11] |
Ioannis H, George K, Andreas P. Assessment of oxy-fuel power generation technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2637-2644. doi: 10.1016/j.rser.2009.07.001
|
[12] |
郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23): 3856-3864.
|
[13] |
刘建华. 国内燃煤锅炉富氧燃烧技术进展[J]. 热力发电, 2020, 49(7): 48-54.
|
[14] |
国家气候战略中心. 温室气体自愿减排项目设计与实施指南[EB/OL]. https://ccer.cets.org.cn/notice/noticeDetail?bulletinInfoId=1174755335156666368.
|
[15] |
国家市场监督管理总局, 国家认证认可监督管理委员会. 温室气体自愿减排项目审定与减排量核查实施规则[EB/OL]. https://www.samr.gov.cn/zw/zfxxgk/fdzdgknr/rzjgs/art/2023/art_bb5b6265d5564d7396a733353a957770.html.
|
[16] |
国家标准化委员会. 基于项目的温室气体减排量评估技术规范 通用要求: GB/T 33760-2017[S]. 北京: 中国标准出版社, 2017.
|
[17] |
国家标准化委员会. 温室气体排放核算与报告要求 第1部分: 发电企业: GB/T 32151.1-2015[S]. 北京: 中国标准出版社, 2015.
|
[18] |
国家发展改革委员会. 中国发电企业温室气体排放核算方法和报告指南(试行)[EB/OL]. https://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f1101.pdf.
|
[19] |
生态环境部. 企业温室气体排放核算与报告指南 发电设施[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/W020221221671986519778.pdf.
|
[20] |
河北省生态环境厅, 河北省科学技术厅. 河北省碳捕集项目减排量核算方法学[EB/OL]. https://hbepb.hebei.gov.cn/zycms/ewebeditor/uploadfile/20230727171653940.pdf.
|
[21] |
于海琴, 李进, 安洪光, 等. 火力发电企业CO2排放量和减排分析[J]. 北京交通大学学报, 2010, 34(3): 101-105.
|
[22] |
王萍萍, 赵永椿, 张军营, 等. 双碳目标下燃煤电厂碳计量方法研究进展[J]. 洁净煤技术, 2022, 28(10): 170-183.
|
[23] |
CDM Executive Board. AM0063: Recovery of CO2 from tail gas in industrial facilities to substitute the use of fossil fuels for production of CO2 --- Version 1.2. 0[EB/OL]. https://cdm.unfccc.int/UserManagement/FileStorage/FU7KL21BISPVHGQCRD906A5YWNET34.
|
[24] |
CDM Executive Board. ACM0013: Construction and operation of new grid connected fossil fuel fired power plants using a less GHG intensive technology --- Version 5.0. 0[EB/OL]. https://cdm.unfccc.int/UserManagement/FileStorage/2BMR6X7ZP3TY89NAWUOI4EGHDK1QFS.
|
[25] |
卫冬丽. 中国燃煤电厂二氧化碳排放量计算方法研究[D]. 北京: 北京交通大学, 2016.
|
[26] |
龙芸. 燃煤电厂CO2排放计算模型与方法研究[D]. 重庆: 重庆大学, 2016.
|
[27] |
国家标准化委员会. 工业企业温室气体排放核算和报告通则: GB/T 32150-2015[S]. 北京: 中国标准出版社, 2015.
|
[28] |
世界资源研究所. 中国燃煤电厂温室气体排放计算工具指南[M]. 华盛顿, 2013.
|
[29] |
世界资源研究所. 能源消耗引起的温室气体排放计算工具指南(2.1版)[M]. 华盛顿, 2013.
|
[30] |
生态环境部. 温室气体自愿减排项目方法学编制大纲[EB/OL]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.mee.gov.cn%2Fxxgk2018%2Fxxgk%2Fxxgk06%2F202303%2FW020230330530211367217.doc&wdOrigin=BROWSELINK.
|
[31] |
CDM Executive Board. Methodological tool 02: Combined tool to identify the baseline scenario and demonstrate additionality Version 07.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-02-v2.2.pdf.
|
[32] |
CDM Executive Board. Methodological tool 01: Tool for the demonstration and assessment of additionality Version 07.0. 0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-01-v5.2.pdf.
|
[33] |
CDM Executive Board. Methodological tool 23: Additionality of first-of-its-kind project activities Version 03.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-23-v1.pdf.
|
[34] |
CDM Executive Board. Methodological tool 03: Tool to calculate project or leakage CO2 emissions from fossil fuel combustion Version 03.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-03-v2.pdf.
|
[35] |
刘德顺. 额外性论证评价工具(第03版)要点分析[EB/OL]. https://www.cdm.ccchina.org.cn/WebSite/CDM/UpFile/2007/200742384843490.pdf.
|
[36] |
R Notz, I Tönnies, G Scheffknecht, et al. CO2 Capture for fossil fuel fired power plants[J]. Chemie Ingenieur Technik, 2010, 82(10): 1619-1818. doi: 10.1002/cite.201090089
|
[37] |
Guicai L, Grzegorz L. Cu-based oxygen carriers for chemical looping processes: Opportunities and challenges[J]. Fuel, 2023, 342: 127828. doi: 10.1016/j.fuel.2023.127828
|
[38] |
王金星, 孙宇航. 化学链燃烧技术的研究进展综述[J]. 华北电力大学学报(自然科学版), 2019, 46(5): 100-110.
|
[39] |
Dalal A, Ezzat K. Current status and future scenarios of carbon capture from power plants emission: a review[J]. Reviews in Environmental Science and Bio/Technology, 2023, 22(3): 799-822. doi: 10.1007/s11157-023-09663-2
|
[40] |
Uchida T, Yamada T, Watanabe S, et al. Application and demonstration of Oxy-fuel combustion technologies to the existing power plant in Australia[C]. Cleaner Combustion and Sustainable World, 2012.
|
[41] |
郭军军, 张泰, 李鹏飞, 等. 中国煤粉富氧燃烧的工业示范进展及展望[J]. 中国电机工程学报, 2021, 41(4): 1197-1208,1526.
|
[42] |
Madejski P, Chmiel K, Subramanian N, et al. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies[J]. Energies, 2022, 15(3): 887-908. doi: 10.3390/en15030887
|
[43] |
李振山, 陈虎, 李维成, 等. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561.
|
[44] |
华中科技大学. 35MW富氧燃烧工业示范[EB/OL]. http://combustion.energy.hust.edu.cn/info/1032/1010.htm.
|
[45] |
郑蕾, 张蕾, 康子晋, 等. 石灰和石灰石反应特性研究[C]. 中国动力工程学会第三届青年学术年会, 2005.
|
[46] |
洪巧巧. 燃煤电厂烟气脱硫脱硝除尘技术生命周期评价[D]. 杭州: 浙江大学, 2015.
|
[47] |
Wang Y, Zhao Y C, Zhang J Y, et al. Technical-economic evaluation of O2/CO2 recycle combustion power plant based on life-cycle[J]. Science China Technological Sciences, 2010, 53: 3284-3293. doi: 10.1007/s11431-010-4164-4
|
[48] |
孔红兵. 600 MW富氧燃烧系统建模分析优化及经济性评估[D]. 武汉: 华中科技大学, 2012.
|
[49] |
宋卫宁. 常规及富氧时300 MW燃煤电厂煤粉燃烧与烟气脱碳的过程模拟[D]. 北京: 北京交通大学, 2012.
|
[50] |
陈紫涵. 350 MWe富氧燃烧系统集成优化与性能综合评价[D]. 武汉: 华中科技大学, 2023.
|
[51] |
Guo J J, Liu Z H, Huang X H, et al. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler[J]. Fuel, 2017, 187: 315-327. doi: 10.1016/j.fuel.2016.09.070
|