Turn off MathJax
Article Contents
ZHANG Haomin, GUO Xiaotao, LIU Ke, LIU Tianxin. Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0063
Citation: ZHANG Haomin, GUO Xiaotao, LIU Ke, LIU Tianxin. Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0063

Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers

doi: 10.12338/j.issn.2096-9015.2024.0063
  • Received Date: 2024-02-29
  • Accepted Date: 2024-03-05
  • Rev Recd Date: 2024-05-21
  • Available Online: 2024-05-29
  • Electromagnetic reverberation chambers are typically calibrated for characteristic parameters such as field uniformity and normalized field strength under low input power conditions. However, in practical applications like electromagnetic compatibility immunity testing, these chambers operate under high input power conditions. Currently, relevant international and domestic standards ignore this difference, providing no specific theoretical or experimental evidence. This paper presents a designed experimental study to investigate the influence of input power on the characteristic parameters of electromagnetic reverberation chambers. A rapid calibration technique using 3D photoelectric field probes was employed for low input power calibration, while high input power parameter measurements were conducted under conditions consistent with actual automotive component immunity tests. Results show that the impact of different input power levels on field uniformity is generally within ±0.5 dB, and the effect on normalized field strength is within 2 dB. Based on these findings, recommendations are provided for calibrating field uniformity and normalized field strength during electromagnetic reverberation chamber calibration and testing processes.
  • loading
  • [1]
    Chen X, Tang J, Li T, et al. Reverberation Chambers for Over-the-Air Tests: An Overview of Two Decades of Research[J]. IEEE Access, 2018, 6: 49129-49143.
    [2]
    Stek T, Hubrechsen A, Prinsloo D S, et al. Over-the-Air Noise Figure Characterization of mm-Wave Active Integrated Antennas Using a Reverberation Chamber[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(3): 1093-1101. doi: 10.1109/TMTT.2022.3217149
    [3]
    Remley K A, Pirkl R J, Wang C M, et al. Estimating and Correcting the Device-Under-Test Transfer Function in Loaded Reverberation Chambers for Over-the-Air Tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(6): 1724-1734. doi: 10.1109/TEMC.2017.2708985
    [4]
    Qi W J, Fang F, Xia W J, et al. A Compact Multi-Probe Reverberation Chamber for Over-the-Air Testing[J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2021, 36(9): 1196-1201. doi: 10.47037/2021.ACES.J.360911
    [5]
    Micheli D, Barazzetta M, Diamanti R, et al. Over-the-Air Tests of High-Speed Moving LTE Users in a Reverberation Chamber[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4340-4349. doi: 10.1109/TVT.2018.2795650
    [6]
    Li J, Qi Y H, Fan J. Over-the-air measurement for MIMO systems[J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22(8): 1046-1058.
    [7]
    Horansky R D, Remley K A. Flexibility in over-the-air testing of receiver sensitivity with reverberation chambers[J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13(15): 2590-2597.
    [8]
    Arnold M D, Jensen M A, Mehmood R. A Reconfigurable Over-the-Air Chamber for Testing Multi-Antenna Wireless Devices[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5289-5298. doi: 10.1109/TAP.2023.3264574
    [9]
    李春雷, 邓波, 高斌, 等. 混响室的仿真与优化[J]. 安全与电磁兼容, 2004(6): 33-35. doi: 10.3969/j.issn.1005-9776.2004.06.014
    [10]
    崔耀中, 魏光辉, 范丽思, 等. 混响室发射天线指向对场均匀性影响研究[J]. 微波学报, 2011, 27(6): 42-46.
    [11]
    D A Hill. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans, 1998, 40(3): 209-217.
    [12]
    P Corona, G Ferrara, M Migliaccio. Reverberating chamber electromagnetic field in presence of an unstirred component[J]. IEEE Trans, 2000, 42(2): 111-115.
    [13]
    P Corona, G Ferrara, M Migliaccio. Reverberating chambers as sources of stochastic electromagnetic fields[J]. IEEE Trans, 1996, 38(3): 348-356.
    [14]
    P. Corona, G. Ferrara, M. Migliaccio. A spectral approach for the determination of the reverberating chamber quality factor[J]. IEEE Trans, 1998, 40(2): 145-153.
    [15]
    P. Corona, J. Ladbury, G. Latmiral. Reverberation-chamber research-then and now: a review of early work and comparison with current understanding[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 44: 87-94. doi: 10.1109/15.990714
    [16]
    Yousaf J, Nah W, Hussein M I, et al. Characterization of Reverberation Chamber-A Comprehensive Review[J]. IEEE Access, 2020, 8: 226591-226608. doi: 10.1109/ACCESS.2020.3045028
    [17]
    邢昊, 何梓滨, 吴梦娟, 等. 电场场强校准技术的研究进展[J]. 计量科学与技术, 2023, 67(3): 20-28. doi: 10.12338/j.issn.2096-9015.2023.0035
    [18]
    Migliaccio M, Gradoni G, Arnaut L R. Electromagnetic Reverberation: The Legacy of Paolo Corona[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 643-652. doi: 10.1109/TEMC.2016.2546183
    [19]
    Q Xu, K Chen, X Shen. Comparison of the Normalized Maximum Field Strength Using E-Field Probe and VNA Methods in a Reverberation Chamber[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2135-2139. doi: 10.1109/LAWP.2019.2938833
    [20]
    X. Guo, Z. He, Y. Zhang. Investigation of field uniformity validation in reverberation chamber using VNA [C]. 2015 7th Asia- Pacific Conference on Environmental Electromagnetics.
    [21]
    Chen X. On Statistics of the Measured Antenna Efficiency in a Reverberation Chamber[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 5417-5424. doi: 10.1109/TAP.2013.2276920
    [22]
    Chen X. On Near-Field and Far-Field Correlations in Reverberation Chambers[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(1): 74-76. doi: 10.1109/LMWC.2018.2879786
    [23]
    Gifuni A, Bastianelli L, Moglie F, et al. Base-Case Model for Measurement Uncertainty in a Reverberation Chamber Including Frequency Stirring[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1695-1703. doi: 10.1109/TEMC.2017.2763627
    [24]
    Leferink F. Fast, Broadband, and High-Dynamic Range 3-D Field Strength Probe[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1015-1021. doi: 10.1109/TEMC.2013.2256360
    [25]
    杭晨哲, 徐定华, 原遵东. 实验室比对数据处理中卡方统计量研究[J]. 计量科学与技术, 2021, 65(5): 108-114. doi: 10.12338/j.issn.2096-9015.2020.9042
    [26]
    苏腾, 郭敏, 刘贵斌, 等. 信号源端口电压驻波比测量方法研究[J]. 计量科学与技术, 2022, 66(7): 33-37.
    [27]
    International Electrotechnical Commission. Electromagnetic Compatibility (EMC)–Part 4-21: Testing and Measurement Techniques-–Reverberation Chamber Test Methods: IEC 61000-4-21[S]. EMC, 2011.
    [28]
    The International Organization for Standardization. Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy–Part 1: General principles and terminology: ISO 11451-1[S]. ISO, 2015.
    [29]
    The International Organization for Standardization. Component test methods for electrical disturbances from narrowband radiated electromagnetic energy–Part 1: General principles and terminology: ISO 11452-1[S]. ISO, 2005.
    [30]
    CTIA Certification. Test Plan for Wireless Device Over-the-Air Performance—Method of Measurement for Radiated RF Power and Receiver Performance, Large-Form-Factor Integrated Device Addendum[Z]. CTIA, 2020.
    [31]
    周鑫, 唐维, 张妍, 等. 网络线缆分析仪功率损耗校准标准器的研究[J]. 计量科学与技术, 2022, 66(9): 33-39. doi: 10.12338/j.issn.2096-9015.2022.0137
    [32]
    Adardour A, Andrieu G, Reineix A. On the Low-Frequency Optimization of Reverberation Chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 266-275. doi: 10.1109/TEMC.2013.2288001
    [33]
    Monsef F, Cozza A. A Possible Minimum Relevance Requirement for a Statistical Approach in a Reverberation Chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1728-1731. doi: 10.1109/TEMC.2015.2464318
    [34]
    Remley K A, Pirkl R J, Shah H A, et al. Uncertainty From Choice of Mode-Stirring Technique in Reverberation-Chamber Measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1022-1030. doi: 10.1109/TEMC.2013.2246570
    [35]
    Senic D, Remley K A, Wang C M J, et al. Estimating and Reducing Uncertainty in Reverberation-Chamber Characterization at Millimeter-Wave Frequencies[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3130-3140. doi: 10.1109/TAP.2016.2556711
    [36]
    Xu Q, Xing L, Zhao Y, et al. A General Method to Calculate the Source-Stirred Correlations in a Well-Stirred Reverberation Chamber[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 169-173. doi: 10.1109/LEMCPA.2020.3034759
    [37]
    陈钧, 曾博, 邓俊泳, 等. 样品长期稳定性等引入的不确定度对电磁兼容能力验证计划结果评价影响的探讨[J]. 计量科学与技术, 2022, 66(11): 64-67. doi: 10.12338/j.issn.2096-9015.2021.0252
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (39) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return