JING Yachun, NIU Lina, LI Guodong, ZHU Yuesu. Design and Optimization of Gas Meter Verification Devices Based on Instantaneous/Cumulative Flow Methods[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0338
Citation: JING Yachun, NIU Lina, LI Guodong, ZHU Yuesu. Design and Optimization of Gas Meter Verification Devices Based on Instantaneous/Cumulative Flow Methods[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0338

Design and Optimization of Gas Meter Verification Devices Based on Instantaneous/Cumulative Flow Methods

More Information
  • Received Date: November 26, 2024
  • Revised Date: March 20, 2025
  • Accepted Date: January 05, 2025
  • Available Online: March 30, 2025
  • Addressing the inefficiency of domestic testing institutions in verifying electronic gas meters using the cumulative flow method, this study proposes a novel design scheme for a verification device employing the instantaneous flow method. The scheme incorporates a near-infrared acquisition interface, which is compiled according to the T/CMA-RQ standard “Optical Interface and Communication Protocol for Gas Meter Testing,” achieving uniformity in near-infrared communication protocols among various manufacturers. The reliability of measurement results using the instantaneous flow method is verified through assessments of its equivalence to the cumulative flow method and its efficiency. Additionally, a combination of multiple nozzles is utilized to enable the detection of all flow points within the G4 to G100 specifications. The stability of the flow field for small-flow nozzles is optimized by installing a butterfly valve between the large and small stagnation containers to create a partition. Furthermore, the instantaneous flow acquisition interface for the gas meter station is optimized. The overall device achieves a detection capability with a flow range of (0.016 to 160) m3/h and an expanded uncertainty of 0.30% (k = 2), filling the gap in domestic testing institutions that have not yet adopted the instantaneous flow method for verifying electronic gas meters.

  • [1]
    马新华, 张国生, 唐红君, 等. 天然气在构建清洁低碳能源体系中的地位与作用[J]. 石油科技论坛, 2022, 41(1): 11. DOI: 10.3969/j.issn.1002-302x.2022.01.003
    [2]
    赵宇, 李有书, 武鸿雁, 等. 环境条件对膜式燃气表计量特性影响的讨论[J]. 中国标准化, 2024(21): 221-225. DOI: 10.3969/j.issn.1002-5944.2024.21.034
    [3]
    刘新. 新型超声波燃气表在燃气运行管理方面的应用[J]. 仪器仪表用户, 2023, 30(2): 42-45. DOI: 10.3969/j.issn.1671-1041.2023.02.010
    [4]
    邵泽华. 燃气计量技术发展趋势及应用分析[C]. 中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会, 2019.
    [5]
    刘洋宏. 气体流量信号转换信号数据模块: CN201610199066.7[P]. [2024-11-23].
    [6]
    孙平. 基于红外的无线采集手持设备研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
    [7]
    王磊, 张涛, 李强. 基于瞬时流量法的燃气流量测量系统设计与实现[J]. 自动化与仪器仪表, 2018, 33(4): 1-5.
    [8]
    Gao L, Wang Y. A comparative study of instantaneous and cumulative flow measurement methods in natural gas pipelines[J]. Journal of Energy Engineering, 2018, 144(3): 04018025. DOI: 10.1061/(ASCE)EY.1943-7897.0000543
    [9]
    江航成, 林明星, 钭伟明, 等. 瞬时流量法检测电子式燃气表计量性能[J]. 自动化仪表, 2020, 41(2): 20-23,27.
    [10]
    Li Z, Chen W. Application of near-infrared acquisition technology in industrial gas monitoring[J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4567-4575.
    [11]
    牛立娜, 杨光磊, 钭伟明, 等. 电子式燃气表数字化计量检测[J]. 中国计量, 2024(5): 128-132.
    [12]
    张明, 李伟, 王强. 基于近红外采集的燃气表瞬时流量检测系统设计[J]. 仪器仪表学报, 2019, 40(5): 1-8.
    [13]
    余嘉芸, 娄倩男, 丁优婷, 等. 超声波流量计误差因素与技术研究进展[J]. 计量科学与技术, 2024, 68(4): 50-59. DOI: 10.12338/j.issn.2096-9015.2023.0336
    [14]
    国家市场监督管理总局. 超声波燃气表检定规程: JJG 1190-2022[S]. 北京: 中国标准出版社, 2022.
    [15]
    曹培娟. 基于表面结构与热效应的音速喷嘴流出系数研究[D]. 天津: 天津大学.
    [16]
    Munson B R, Young D F, Okiishi T H. Fundamentals of Fluid Mechanics[M]. Wiley, 2017.
    [17]
    姜琛. 天然气流量积算仪检定装置的建立[J]. 计量科学与技术, 2023, 67(2): 42-47. DOI: 10.12338/j.issn.2096-9015.2022.0308
    [18]
    耿存杰, 张东飞, 李国占, 等. 蝶阀对超声流量计在线校准性能的影响研究[J]. 计量科学与技术, 2023, 67(2): 68-74. DOI: 10.12338/j.issn.2096-9015.2022.0048
    [19]
    张亮, 张安龙, 曲平平, 等. 脉动流场下波壁管内流体流动与换热特性[J]. 科学技术与工程, 2022, 22(1): 173-178. DOI: 10.3969/j.issn.1671-1815.2022.01.020
    [20]
    江航成, 邪刚, 林明星. 智能膜式燃气表自动化校准技术[J]. 煤气与热力, 2020, 40(12): 26-30.
    [21]
    中国计量协会. 燃气表检测用光学接口及通信协议: T/CMA RQ120-2023 [S]. 北京: 中国计量出版社, 2023.
    [22]
    杜卫民, 王强. 涡街流量传感器与配管同轴度对流量测量影响的实验研究[J]. 中国计量, 2015(6): 93-95.
    [23]
    Johnson M, Taylor K. Impact of environmental factors on gas flow measurement accuracy[J]. International Journal of Heat and Fluid Flow, 2016, 59: 1-9.
    [24]
    黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6,12.
    [25]
    Smith J, Brown R. Challenges in transient flow measurement for natural gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 1-12. DOI: 10.1016/j.jngse.2018.11.024
    [26]
    Zhang H, Liu Y. A review of gas flow measurement techniques under dynamic conditions[J]. Sensors and Actuators A: Physical, 2020, 301: 111756. DOI: 10.1016/j.sna.2019.111756
    [27]
    毕晓龙, 邢超, 吴波, 等. 用于液体流量标准装置的便携式时间间隔测试仪的设计与研制[J]. 计量科学与技术, 2022, 66(8): 13-17.
    [28]
    刘发展, 赵霖, 刘源, 等. 基于超声传播时间法的水轮机流量测量不确定度[J]. 计量科学与技术, 2022, 66(2): 33-37,54.
    [29]
    邵泽华. 热式质量燃气表发展研究[J]. 煤气与热力, 2019, 39(9): 16-19.
  • Related Articles

    [1]HE Renwei, LV Dong, HUANG Yuxing, XUE Pu. Balance Optimization of Inertia Force of Jaw Crusher[J]. Metrology Science and Technology, 2023, 67(2): 62-67. DOI: 10.12338/j.issn.2096-9015.2022.0312
    [2]JIANG Chen. Establishment of Verification Device for Natural Gas Flow Integration Meters[J]. Metrology Science and Technology, 2023, 67(2): 42-47. DOI: 10.12338/j.issn.2096-9015.2022.0308
    [3]ZOU Yi, YU Li, LI Chengzhi. Research on Verification Device for Air Permeability Standard Used in Tobacco Industry[J]. Metrology Science and Technology, 2023, 67(1): 55-59, 54. DOI: 10.12338/j.issn.2096-9015.2022.0106
    [4]GAO Jianzhuo, CHEN Long, WANG Ningxi, LUO Xin, CHEN Hui. Optimal Design of the Impact Structure of Spring Impactor Calibration Device Based on Response Surface Method[J]. Metrology Science and Technology, 2022, 66(9): 40-46. DOI: 10.12338/j.issn.2096-9015.2022.0002
    [5]LI Ming, ZHU Guijun, WANG Wei, WANG Ao. Design of Dynamic Calibration Device for Non-Combustibility Test Furnace of Building Materials[J]. Metrology Science and Technology, 2022, 66(8): 37-41, 31. DOI: 10.12338/j.issn.2096-9015.2022.0032
    [6]ZHU Caiyi, YU Zhun, LUO Ying. Improving Frequency Characteristics of a Transformer and Optimal Design of its Voltage Conversion Accuracy[J]. Metrology Science and Technology, 2022, 66(2): 44-49. DOI: 10.12338/j.issn.2096-9015.2021.0102
    [7]ZHANG Duoli, JIN Longxue, WU Yueming. The Development of Small Pulling Force Gauge Calibration Device[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2021.0037
    [8]QIU Jianmin, SANG Shuaijun, YE Junhao, WANG Ying, ZHANG Zhikai. Design of an Automatic Verification System for Octave-Band and Fractional Octave-Band Filters[J]. Metrology Science and Technology, 2021, 65(11): 14-18, 34. DOI: 10.12338/j.issn.2096-9015.2021.0505
    [9]GUO Wei, LUO Erping, LIU Juan, YAN Zedong, JIA Min, MA Xiaoyu, TANG Chi. A Comparative-Analysis-Based Teaching Design for Verification of Sphygmomanometers[J]. Metrology Science and Technology, 2021, 65(8): 11-14. DOI: 10.12338/j.issn.2096-9015.2020.0218
    [10]YANG Jiali, MAO Hongyu, HE Longbiao, ZHU Haijiang, FENG Xiujuan, NIU Feng. Design Optimization of the Resonance Frequency of a High Sound Pressure Resonant Coupled Tube[J]. Metrology Science and Technology, 2021, 65(3): 66-70. DOI: 10.3969/j.issn.2096-9015.2021.03.14

Catalog

    Article Metrics

    Article views (3) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return